Movimiento Parabolico
Enviado por xndypxndx • 15 de Junio de 2014 • 1.759 Palabras (8 Páginas) • 182 Visitas
Movimiento parabólico
Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. Se corresponde con la trayectoria ideal de un proyectil que se mueve en un medio que no ofrece resistencia al avance y que está sujeto a un campo gravitatorio uniforme.
Puede ser analizado como la composición de dos movimientos rectilíneos: un movimiento rectilíneo uniforme horizontal y un movimiento rectilíneo uniformemente acelerado vertical
OBJETIVOS
1. Estudiar los conceptos básicos del movimiento parabólico descrito en la experiencia realizada en el laboratorio.
2. Describir las características del movimiento parabólico que realiza el balín.
3. Desarrollar los conceptos de velocidad, distancia y gravedad descritos por el movimiento y la distancia del balín al ser lanzados hacia distancias cada vez mayores.
4. Analizar por medio de los datos el movimiento y determinar su comportamiento con respecto al plano coordenado (abscisa x, ordenada y)
Tipos de movimiento parabólico
Movimiento de media parábola
El movimiento de media parábola o semiparabólico (lanzamiento horizontal)
se puede considerar como la composición de un avance horizontal rectilíneo uniforme y la caída libre
Movimiento de media parábola
El movimiento parabólico completo
puede considerar como la composición de un avance horizontal rectilíneo uniforme y un lanzamiento vertical hacia arriba, que es un movimiento rectilíneo uniformemente acelerado hacia abajo (MRUA) por la acción de la gravedad.
En condiciones ideales de resistencia al avance nulo y campo gravitatorio uniforme, lo anterior implica que:
1. Un cuerpo que se deja caer libremente y otro que es lanzado horizontalmente desde la misma altura tardan lo mismo en llegar al suelo.
2. La independencia de la masa en la caída libre y el lanzamiento vertical es igual de válida en los movimientos parabólicos.
3. Un cuerpo lanzado verticalmente hacia arriba y otro parabólicamente completo que alcance la misma altura tarda lo mismo en caer.
Ecuaciones del movimiento parabólico
Hay dos ecuaciones que rigen el movimiento parabólico:
\mathbf{v_0} = v_0 \, \cos{\phi} \, \mathbf{i} + v_0 \, \sin{\phi} \, \mathbf{j}
\mathbf{a} = -g \, \mathbf{j}
donde:
v_0 \, es el módulo de la velocidad inicial.
\phi \, es el ángulo de la velocidad inicial sobre la horizontal.
g \, es la aceleración de la gravedad.
La velocidad inicial se compone de dos partes:
v_0 \, \cos{\phi} que se denomina componente horizontal de la velocidad inicial.
En lo sucesivo v_{0x} \,
v_0 \, \sin{\phi} que se denomina componente vertical de la velocidad inicial.
En lo sucesivo v_{0y} \,
La velocidad inicial se compone de dos partes:
v_0 \, \cos{\phi} que se denomina componente horizontal de la velocidad inicial.
En lo sucesivo v_{0x} \,
v_0 \, \sin{\phi} que se denomina componente vertical de la velocidad inicial.
En lo sucesivo v_{0y} \,
Será la que se utilice, excepto en los casos en los que deba tenerse en cuenta el áng ulo de la velocidad inicial.
Ecuación de la aceleración
La única aceleración que interviene en este movimiento es la de la gravedad, que corresponde a la ecuación:
\mathbf{a} = -g \, \mathbf{j}
que es vertical y hacia abajo.
Ecuación de la velocidad
La velocidad de un cuerpo que sigue una trayectoria parabólica se puede obtener integrando la siguiente ecuación:
La integración es muy sencilla por tratarse de una ecuación diferencial de primer orden y el resultado final es:
\mathbf{v}(t) = v_{0x}\mathbf{i}+(v_{0y}-gt)\mathbf{j}
Cuando un objeto es lanzado con cierta inclinación respecto a la horizontal y bajo la acción solamente de la fuerza gravitatoria su trayectoria se mantiene en el plano vertical y es parabólica.
EJEMPLOS
Se patea un balón de fútbol con un ángulo de 37° con una velocidad de 20 m/s. Calcule:
a) La altura máxima.
b) El tiempo que permanece en el aire.
c) La distancia a la que llega al suelo.
d) La velocidad en X y Y del proyectil después de 1 seg de haber sido disparado
Datos
Ángulo = 37°
a) Ymax = ?
d) Vx =?
Vo = 20m/s
b) t total = ?
Vy = ?
g= -9.8 m/s^2
c) X = ?
Paso 1
Vox = Vo Cos a = 20 m/s Cos 37° = 15.97 m/s
Voy = Vo Se n a = 20 m/s Sen 37° = 12.03 m/s
Paso 2
Calcular el tiempo de altura máxima , donde Voy = 0
Por lo tanto : t = (Vfy - Voy) / g = (0 - 12.03 m/s) / 9.8 = 1.22.seg.
Paso 3
Calcular a) la altura máxima:
Ymax = Voy t + gt^2 / 2= 12.03 m/s ( 1.22s) + (( -9.8m/s^2 )(1.22s)^2) / 2 = 7.38m
Paso 4
Calcular b) el tiempo total . En este caso solo se multiplica el tiempo de altura máxima por 2, porque sabemos que la trayectoria en este caso es simétrica y tarda el doble de tiempo en caer el proyectil de lo que tarda en alcanzar la altura máxima.
T total = tmax (2) = 1.22s (2) = 2.44 s.
Paso 5
Calcular el alcance máximo, para lo cual usaremos esta formula:
X = Vx t total = 15.97 m/s ( 2.44s) = 38.96 m.
Paso 6
Vfy = gt + Voy = (- 9.8) ( 1seg.) + 12.03 m/s = 2.23 m/s
Vfx = 15.97 m/s ,ya que esta es constante durante todo el movimiento.
ejemplo 2- Sea un proyetil lanzado desde un cañón. Si elegimos un sistema de referencia de modo que la dirección Y sea vertical y positiva hacia arriba, a y = - g y a x = 0. Además suponga que el instante t = 0, el proyectil deja de origen (X i = Y iVi. = 0) con una velocidad
Si Vi hace un ángulo qi con la horizontal, a partir de las definiciones
...