Núcleo E Imagen
Enviado por alfolu • 24 de Noviembre de 2013 • 1.329 Palabras (6 Páginas) • 319 Visitas
5.2 Núcleo e imagen de una transformación lineal.
En esta sección se desarrollan algunas propiedades básicas de las transformaciones lineales.
Teorema 1. Sea T: V W una transformación lineal. Entonces para todos los vectores u, v, v1, v2,….vn en V y todos los escalares
Nota en la parte i el 0 de la izquierda es el vector cero en v; mientras que el cero de la derecha es el vector cero en W.
i. T(0) = T(0 + 0)= T(0) + T(0). Así 0= T(0) – T(0) = T(0) + t(0) – T(0) = T(0)
ii.T(u-v) = T[u + (-1)v] = Tu + T[(-1)v] = Tu + (-1)Tv = Tu – Tv.
iii.Esta parte se prueba por inducción (vea el apéndice 1). Para n = 2 se tiene T(α1v1 + α2v2) = T (α1v1) + T(α2v2) = α1Tv1 + α2Tv2. Así, la ecuación (1) se cumple para n = 2. Se supone que se cumple para n = k y se prueba para n=k + 1: T(α1v1 + α2v2+ ….+ αkvk+αk+1vk-1 ) = T(α1v1 + α2v2+….+αkvk) + T(αk+1vk+1), y usando la ecuación en la parte iii para n= k, esto es igual a (α1Tv1 + α2Tv2+….αkTvk) + αk+1Tvk+1, que es lo que se quería demostrar. Esto completa la prueba.
Observación. Los incisos i) y ii) del teorema 1 son casos especiales del inciso iii). Un dato importante sobre las transformaciones lineales es que están completamente determinadas por el efecto sobre los vectores de la base.
Teorema 2 Sea v un espacio vectorial de dimensión finita con base B= {v1,v2,….vn}. Sean w1,w2,….wn vectores en W. Suponga que T1 y T2 son dos transformaciones lineales de V en W tales que T1vi = T2vi = wi para i = 1, 2,…,n. Entonces para cualquier vector v ϵ v, T 1v = T2v; es decir T1 = T2.
Como B es una base para V, existe un conjunto único de escalares α1, α2,…., αn. Tales que v = α1v1 + α2v2 + …+ αn vn.
Entonces, del inciso iii) del teorema 1, T1v = T1(α1 v1 + α2v2 + …+ αnvn) = α1T2v1 + α2T2v2 +… + αnTnvn= α1w1 + α2w2 +…+ αnTnvn
De manera similar T2v = T2(α1v1 + α2v2 + …+ αnvn) = α1T2v1 + α2T2v2 +…+ αnTnvn = α1w1 + α2w2 +…+ αnvn
Por lo tanto, T1v =T2v.
El teorema 2 indica que si T:v W y V tiene dimensión finita, entonces sólo es necesario conocer el efecto que tiene T sobre los vectores de la base en V. Esto es, si se conoce la imagen de cada vector básico, se puede determinar la imagen de cualquier vector en V. Esto determina T por completo. Para ver esto, sean v1, v2,….vn una base en V y sea v otro vector en V. Entonces, igual que en l aprueba del teorema 2, Tv = α1Tv1 + α2Tv2 +…+ αnTvn
Así, se puede calcular Tv para cualquier vector vϵ V si se conocen Tv1,Tv2,….Tvn
Ejemplo 1 Si se conoce el efecto de una transformación lineal sobre los vectores de la base, se conoce el efecto sobre cualquier otro vector.
Sea T una transformación lineal de R3 en R2 y suponga que
Solución. Se tiene
Entonces
Surge otra pregunta; si w1,w2,….,wn son n vectores en W, ¿existe una transformación lineal T tal que Tv1 = w1 para i = 1,2,…,n? La respuesta es sí. Como lo muestra el siguiente teorema.
Definición 1 Núcleo e imagen de una transformación lineal
Sean V y W dos espacios vectoriales y sea T:V W una transformación lineal. Entonces
i . El núcleo de T, denotado por un, está dado por
ii. La imagen de T, denotado por Im T, esta dado por
Observacion 1. Observe que un T es no vacio porque, de acuerdo al teorema 1, T(0) = 0 de manera que 0 ϵ un T para cualquier transformación lineal T. Se tiene interés en encontrar otros vectores en V que “se transformen en 0”. De nuevo, observe que cuando escribimos T(0) = 0, el 0 de la izquierda está en
...