Orbitales atómicos
Enviado por saulort_98 • 12 de Marzo de 2015 • 1.064 Palabras (5 Páginas) • 205 Visitas
La función angular que representa a un orbital de tipo s es independiente del ángulo, lo que supone que un orbital s presenta simetría esférica. Este orbital se representa normalmente mediante una superficie esférica centrada en el núcleo. Los límites de esta superficie esférica definen la región del espacio para la cual la probabilidad de encontrar al electrón es elevada, generalmente superior al 75%. Cualquier orbital de tipo s se representa con una superficie esférica.
Representación de la parte angular de la función de onda de los orbitales s (probabilidad 75 %)
Representación de la parte angular de la función de onda de los orbitales p (probabilidad 75 %)
Todos los orbitales con l >0 poseen amplitudes que varían con el ángulo. Las representaciones gráficas más comunes de los tres orbitales p son idénticas y consisten en dos esferas tangentes en un punto (núcleo). La única diferencia estriba en la orientación de las mismas (según los ejes x, y o z). Cada una de estas representaciones corresponde a un valor del número cuántico ml de los orbitales individuales. La forma de los orbitales d y f se muestran también en las figuras. En en caso de la parte angular de la función de onda, se denomina nodo o superficie nodal al plano del espacio en el que la función se hace cero. De forma general, un orbital caracterizado por un valor del número cuántico l posee l planos nodales. Como puede observarse en las mencionadas figuras, los orbitales de tipo p poseen un plano nodal (que pasa por el núcleo), los orbitales d poseen 2 planos o superficies nodales perpendiculares entre sí y los orbitales f presentan 3 de estos planos nodales.
Representación de la parte angular de la función de onda de los orbitales d (probabilidad 75 %).
Representación de la parte angular de la función de onda de los orbitales f (probabilidad 75 %)
Hay que señalar que aunque los orbitales s son los únicos que presentan simetría esférica, la suma de la densidad electrónica de los 3 orbitales p, de los 5 orbitales d o de los 7 orbitales f también es esférica. Esto se conoce como teorema de Unsold.
Como se ha comentado ya en varias ocasiones, la función de onda no tiene sentido físico, y ha de acudirse a su cuadrado para obtener alguna información, siempre en términos de probabilidad. Al igual que se describió para la parte radial de la función de onda, también es posible obtener el cuadrado de la parte angular de dicha función, Θ2l,ml (θ) Φ2ml(φ) lo que da lugar a nuevas superficies tridimensionales similares a las representadas anteriormente. Para los orbitales de tipo s, el cuadrado de tal función sigue teniendo simetría esférica, por lo que su representación gráfica no diferiría mucha de la correspondiente a la función angular. Sin embargo, para los orbitales p y d se produce un ligero alargamiento de los lóbulos esféricos ya comentados. De cualquier forma, hay que recalcar que ni las representaciones de Θl,ml (θ) Φml(φ) ni las de Θ2l,ml (θ) Φ2ml(φ) describen ningún orbital, aunque generalmente se emplean como sinónimas de orbitales
...