Relatividad
Enviado por alexhiz • 8 de Junio de 2014 • 2.944 Palabras (12 Páginas) • 178 Visitas
Seguramente todos hemos escuchado hablar de Albert Einstein, sin duda es uno de los físicos mas importantes de la historia y para muchos el mayor genio de todos los tiempos (en lo personal prefiero a Newton, pero queda a cuestión de gustos). Considero que estoy en lo correcto al afirmar que no existe persona en la tierra que tenga conocimientos básicos de ciencia y que no sepa quien es la persona de la siguiente imagen.
Albert Einstein es un físico que en su época obtuvo un enorme reconocimiento de la sociedad y tanta fama como las actuales estrellas de cine o de la música. No había lugar en el que una multitud de personas se acercaran a el para verlo mejor, intercambiar algunas palabras e inclusive obtener alguna fotografía del físico.
Pero no vamos a hablar acerca de su fama, vamos a hablar acerca de su obra, mas especificamente de su Teoría de la Relatividad, muchas personas han escuchado de esta revolucionaria obra, la idea general es fácil de comprender, pero adentrarse en sus variaciones y todo lo que implica dentro de la Física es algo que a muchos confunde con facilidad y a los que estamos familiarizados con ella nos causa ese nudo en la garganta al ver semejantes postulados.
Para muchos una simple obra teórica que no sirve de nada y que aun no ha sido comprobada, para muchos otros significa el futuro por develar junto con la mecánica cuántica.
La teoría de la relatividad, desarrollada fundamentalmente por Albert Einstein, pretendía originalmente explicar ciertas anomalías en el concepto de movimiento relativo, pero en su evolución se ha convertido en una de las teorías más importantes en las ciencias físicas y ha sido la base para que los físicos demostraran la unidad esencial de la materia y la energía, el espacio y el tiempo, y la equivalencia entre las fuerzas de la gravitación y los efectos de la aceleración de un sistema.
La teoría de la relatividad, tal como la desarrolló Einstein, tuvo dos formulaciones diferentes.
• La primera es la que corresponde a dos trabajos publicados en 1906 en los Annalen der Physik. Es conocida como la Teoría de la relatividad especial y se ocupa de sistemas que se mueven uno respecto del otro con velocidad constante (pudiendo ser igual incluso a cero).
• La segunda, llamada Teoría de la relatividad general (así se titula la obra de 1916 en que la formuló), se ocupa de sistemas que se mueven a velocidad variable.
La teoría especial de la relatividad no negaba las teorías de Newton o de Galileo, simplemente las corregía. La relatividad sólo se hacía evidente a velocidades cercanas a la velocidad de la luz. A velocidades “normales”, las diferencias en los resultados al utilizar las transformaciones de Galileo y las transformaciones de Lorentz, son tan pequeñas que no se pueden detectar, y es por eso que las implicaciones de la relatividad especial nos parecen tan poco intuitivas. Pero si fuéramos capaces de generar una velocidad suficiente (digamos 3/4 de la velocidad de la luz, por ejemplo), empezaríamos a notar los efectos predichos por la relatividad:
• Los relojes en movimiento irían más lentos que los estacionarios (no porqué el reloj funcionara más despacio, sino por el tiempo en sí).
• Los objetos en movimiento se contraerían en la dirección del movimiento.
• Cuanto más rápido se moviera un objeto, más masa tendría.
Estos efectos están presentes en nuestra vida diaria, pero son tan increíblemente pequeños que los podemos despreciar perfectamente. Ese es el porque de que las transformaciones de Galileo funcionan tan bien, y las podemos seguir utilizando en nuestros sistemas de referencia que se mueven con velocidades relativamente pequeñas.
Teoría de la relatividad especial
Los postulados de la relatividad especial son dos. El primero afirma que todo movimiento es relativo a cualquier otra cosa, y por lo tanto el éter, que se había considerado durante todo el siglo XIX como medio propagador de la luz y como la única cosa absolutamente firme del Universo, con movimiento absoluto y no determinable, quedaba fuera de lugar en la física, que no necesitaba de un concepto semejante (el cual, además, no podía determinarse por ningún experimento).
El segundo postulado afirma que la velocidad de la luz es siempre constante con respecto a cualquier observador. De sus premisas teóricas obtuvo una serie de ecuaciones que tuvieron consecuencias importantes e incluso algunas desconcertantes, como el aumento de la masa con la velocidad. Uno de sus resultados más importantes fue la equivalencia entre masa y energía, según la conocida fórmula E=mc², en la que c es la velocidad de la luz y E representa la energía obtenible por un cuerpo de masa m cuando toda su masa sea convertida en energía.
Dicha equivalencia entre masa y energía fue demostrada en el laboratorio en el año 1932, y dio lugar a impresionantes aplicaciones concretas en el campo de la física (tanto la fisión nuclear como la fusión termonuclear son procesos en los que una parte de la masa de los átomos se transforma en energía). Los aceleradores de partículas donde se obtiene un incremento de masa son un ejemplo experimental muy claro de la teoría de la relatividad especial.
La teoría también establece que en un sistema en movimiento con respecto a un observador se verifica una dilatación del tiempo; esto se ilustra claramente con la famosa paradoja de los gemelos:
“imaginemos a dos gemelos de veinte años, y que uno permaneciera en la Tierra y el otro partiera en una astronave, tan veloz como la luz, hacia una meta distante treinta años luz de la Tierra; al volver la astronave, para el gemelo que se quedó en la Tierra habrían pasado sesenta años; en cambio, para el otro sólo unos pocos días”.
Teoría de la relatividad general
La teoría de la relatividad general se refiere al caso de movimientos que se producen con velocidad variable y tiene como postulado fundamental el principio de equivalencia, según el cual los efectos producidos por un campo gravitacional equivalen a los producidos por el movimiento acelerado.
La revolucionaria hipótesis tomada por Einstein fue provocada por el hecho de que la teoría de la relatividad especial, basada en el principio de la constancia de la velocidad de la luz sea cual sea el movimiento del sistema de referencia en el que se mide (tal y como se demostró en el experimento de Michelson y Morley [1]), no concuerda con la teoría de la gravitación newtoniana: si la fuerza con que dos cuerpos se atraen depende de la distancia entre ellos, al moverse uno tendría que cambiar al instante la fuerza sentida por el otro, es decir, la interacción tendría una velocidad de propagación infinita, violando la teoría especial de la relatividad que señala
...