ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Respiracion Celular


Enviado por   •  18 de Septiembre de 2012  •  3.281 Palabras (14 Páginas)  •  929 Visitas

Página 1 de 14

Capítulo 8. Glucólisis y respiración

La oxidación de la glucosa es una fuente principal de energía en la mayoría de las células. Cuando la glucosa se degrada en una serie de pequeños pasos por medio de enzimas, una proporción significativa de la energía contenida en la molécula vuelve a empaquetarse en los enlaces fosfato de las moléculas de ATP.

La primera fase en la degradación de la glucosa es la glucólisis que se efectúa en el citoplasma de la célula. La segunda fase es la respiración aeróbica, que requiere oxígeno y, en las células eucarióticas, tiene lugar en las mitocondrias. La respiración comprende el ciclo de Krebs y el transporte terminal de electrones acoplado al proceso de fosforilación oxidativa. Todos estos procesos están íntimamente relacionados.

En condiciones anaeróbicas, el proceso de fermentación transforma al ácido pirúvico producido por la glucólisis o en etanol o en ácido láctico.

Es posible saber cómo y en qué cantidad la energía química, originalmente presente en la molécula de glucosa, se recupera en forma de ATP en el curso de la degradación de la molécula de glucosa. Así, es posible calcular el rendimiento energético global de la oxidación de la glucosa, que puede dar como resultado un máximo de 38 moléculas de ATP. La actividad de la glucólisis y la respiración están reguladas de acuerdo con las necesidades energéticas de la célula

Hasta ahora nos hemos referido a la degradación de la molécula de glucosa, pero otras moléculas alimenticias, que incluyen a las grasas, los polisacáridos y las proteínas, pueden ser también degradadas a compuestos que pueden ingresar en las vías centrales -glucólisis y ciclo de Krebs- en diferentes pasos. La biosíntesis de compuestos orgánicos utiliza los compuestos precursores derivados de intermediarios en la secuencia respiratoria y es impulsada por la energía derivada de esos procesos. Así, otras vías catabólicas y anabólicasestán íntimamente interrelacionadas.

Un panorama general de la oxidación de la glucosa

La oxidación § consiste en la pérdida de un electrón § y la reducción § es la ganancia de un electrón. Dado que en las reacciones de oxido-reducción espontáneas, los electrones van de niveles de energía mayores a niveles de energía menores, cuando una molécula se oxida, habitualmente libera energía cuando. En la oxidación de la glucosa, los enlaces carbono-carbono (C-C), carbono-hidrógeno (C-H) y oxígeno-oxígeno (O-O) se cambian por enlaces carbono-oxígeno (C-O) e hidrógeno-oxígeno (H-O), a medida que los átomos de oxígeno atraen y acaparan electrones. La ecuación resumida de este proceso es:

Glucosa + Oxígeno => Dióxido de Carbono + Agua + Energía

o bien,

C6H12O6 + 6O2=> 6CO2 + 6H2O

G = -686 kcal/mol

Los sistemas vivos son expertos en conversiones energéticas. Su organización les permite atrapar esta energía libre, de modo que no se disipe al azar, sino que pueda usarse para hacer el trabajo de la célula. Aproximadamente el 40% de la energía libre desprendida por la oxidación de la glucosa se conserva en la conversión de ADP § a ATP §.

Esquema global de la oxidación de la glucosa.

En presencia de oxígeno, el ácido pirúvico entra en el ciclo de Krebs donde se sintetiza más ATP y se transfieren más electrones y protones a las coenzimas. Estas coenzimas aceptoras de electrones transfieren su carga a la cadena transportadora de electrones a lo largo de la cual, paso a paso, los electrones caen a niveles inferiores de energía. A medida que esto ocurre, se fabrica mucho más ATP. Al final de la cadena transportadora, los electrones se reúnen con los protones y se combinan con el oxígeno, formándose agua. En ausencia de oxígeno, el ácido pirúvico puede convertirse en ácido láctico o etanol. Este proceso, llamado fermentación, no produce ATP, pero regenera las moléculas de coenzima aceptoras de electrones, necesarias para que la glucólisis continúe.

Respiración

La respiración § se desarrolla en dos etapas: el ciclo de Krebs § y el transporte terminal de electrones §. En el curso de la respiración, las moléculas de tres carbonos de ácido pirúvico producido por la glucólisis § son degradadas a grupos acetilo de dos carbonos, que luego entran al ciclo de Krebs. En una serie de reacciones en el ciclo de Krebs, el grupo acetilo de dos carbonos es oxidado completamente a dióxido de carbono. En el curso de la oxidación de cada grupo acetilo se reducen cuatro aceptores de electrones § (tres NAD+ y un FAD) y se forma otra molécula de ATP §.

En el ciclo de Krebs. los carbonos donados por el grupo acetilo se oxidan a dióxido de carbono y los electrones pasan a los transportadores de electrones. Lo mismo que en la glucólisis, en cada paso interviene una enzima § específica. La coenzima A es el nexo entre la oxidación del ácido pirúvico y el ciclo de Krebs. A modo de resumen: en el ciclo de Krebs se producen una molécula de ATP, tres moléculas de NADH y una molécula de FADH2 que representan la producción de energía de este ciclo. Se necesitan dos vueltas del ciclo para completar la oxidación de una molécula de glucosa. Así, el rendimiento energético total del ciclo de Krebs para una molécula de glucosa es dos moléculas de ATP, seis moléculas de NADH y dos moléculas de FADH.

La etapa final de la respiración es el transporte terminal de electrones §, que involucra a una cadena de transportadores de electrones y enzimas § embutidas en la membrana interna de la mitocondria §. A lo largo de esta serie de transportadores de electrones, los electrones de alta energía transportados por el NADH de la glucólisis y por el NADH y el FADH2 del ciclo de Krebs van "cuesta abajo" hasta el oxígeno. En tres puntos de su pasaje a lo largo de toda la cadena de transporte de electrones, se desprenden grandes cantidades de energía libre que impulsan el bombeo de protones § (iones H+) hacia el exterior de la matriz § mitocondrial. Esto crea un gradiente electroquímico a través de la membrana interna de la mitocondria. Cuando los protones pasan a través del complejo de ATP sintetasa §, a medida que vuelven a fluir a favor del gradiente electroquímico al interior de la matriz, la energía liberada se utiliza para formar moléculas de ATP a partir de ADP § y fosfato inorgánico. Este mecanismo, en virtud del cual se lleva a cabo la fosforilación oxidativa §, se conoce como acoplamiento quimiosmótico §.

En esta representación de la cadena respiratoria, las moléculas que se indican: flavina mononucleótido (FMN), coenzima Q (CoQ) y los citocromos b, c, a y a3, son los principales transportadores de electrones de la cadena. Al menos otras nueve moléculas transportadoras

...

Descargar como (para miembros actualizados) txt (20 Kb)
Leer 13 páginas más »
Disponible sólo en Clubensayos.com