Teoria Del Big Bang
Enviado por Cdorante • 5 de Mayo de 2013 • 1.435 Palabras (6 Páginas) • 351 Visitas
Teoría del big bang
En cosmología física, la teoría del Big Bang o teoría de la gran explosión es un modelo científico que trata de explicar el origen del Universo y su desarrollo posterior a partir de una singularidad espaciotemporal. Técnicamente, este modelo se basa en una colección de soluciones de las ecuaciones de la relatividad general, llamados modelos de Friedmann- Lemaître - Robertson - Walker. El término "Big Bang" se utiliza tanto para referirse específicamente al momento en el que se inició la expansión observable del Universo (cuantificada en la ley de Hubble), como en un sentido más general para referirse al paradigmacosmológico que explica el origen y la evolución del mismo.
Curiosamente, la expresión Big Bang proviene -a su pesar- del astrofísico inglés Fred Hoyle, uno de los detractores de esta teoría y, a su vez, uno de los principales defensores de la teoría del estado estacionario, quien en 1949, durante una intervención en la BBC dijo, para mofarse, que el modelo descrito era sólo un big bang (gran explosión). No obstante, hay que tener en cuenta que en el inicio del Universo ni hubo explosión ni fue grande, pues en rigor surgió de una «singularidad» infinitamente pequeña, seguida de la expansión del propio espacio.1
La idea central del Big Bang es que la teoría de la relatividad general puede combinarse con las observaciones de isotropía yhomogeneidad a gran escala de la distribución de galaxias y los cambios de posición entre ellas, permitiendo extrapolar las condiciones del Universo antes o después en el tiempo.
Una consecuencia de todos los modelos de Big Bang es que, en el pasado, el Universo tenía una temperatura más alta y mayordensidad y, por tanto, las condiciones del Universo actual son muy diferentes de las condiciones del Universo pasado. A partir de este modelo, George Gamow en 1948 pudo predecir que debería de haber evidencias de un fenómeno que más tarde sería bautizado comoradiación de fondo de microondas
Michio Kaku ha señalado cierta paradoja en la denominación big bang (gran explosión): en cierto modo no puede haber sido grande ya que se produjo exactamente antes del surgimiento del espacio-tiempo, habría sido el mismo big bang lo que habría generado las dimensiones desde una singularidad; tampoco es exactamente una explosión en el sentido propio del término ya que no se propagó fuera de sí mismo.
Basándose en medidas de la expansión del Universo utilizando observaciones de las supernovas tipo 1a, en función de la variación de la temperatura en diferentes escalas en la radiación de fondo de microondas y en función de la correlación de las galaxias, la edad del Universo es de aproximadamente 13,7 ± 0,2 miles de millones de años. Es notable el hecho de que tres mediciones independientes sean consistentes, por lo que se consideran una fuerte evidencia del llamado modelo de concordancia que describe la naturaleza detallada del Universo.
El universo en sus primeros momentos estaba lleno homogénea e isótropamente de una energía muy densa y tenía una temperatura y presión concomitantes. Se expandió y se enfrió, experimentando cambios de faseanálogos a la condensación del vapor o a la congelación del agua, pero relacionados con las partículas elementales.
Aproximadamente 10-35 segundos después del tiempo de Planck un cambio de fase causó que el Universo se expandiese de forma exponencial durante un período llamado inflación cósmica. Al terminar la inflación, los componentes materiales del Universo quedaron en la forma de un plasma de quarks-gluones, en donde todas las partes que lo formaban estaban en movimiento en formarelativista. Con el crecimiento en tamaño del Universo, la temperatura descendió, y debido a un cambio aún desconocido denominado bariogénesis, los quarks y los gluones se combinaron en bariones tales como el protón y el neutrón, produciendo de alguna manera la asimetría observada actualmente entre la materia y la antimateria. Las temperaturas aún más bajas condujeron a nuevos cambios de fase, que rompieron la simetría, así que les dieron su forma actual a las fuerzas fundamentales de la física y a las partículas elementales. Más tarde, protones y neutrones se combinaron para formar los núcleos de deuterio y de helio, en un proceso llamado nucleosíntesis primordial. Al enfriarse el Universo, la materia gradualmente dejó de moverse de forma relativista y su densidad de energía comenzó a dominar gravitacionalmente sobre la radiación. Pasados 300.000 años, los electrones y los núcleos se combinaron para formar
...