Teoria.
Enviado por frayandrea • 6 de Mayo de 2013 • Informe • 296 Palabras (2 Páginas) • 313 Visitas
Par
Un frutero necesita 16 cajas de naranjas, 5 de plátanos y 20 de manzanas. Dos mayoristas pueden suministrarle para satisfacer sus necesidades, pero sólo venden la fruta en contenedores completos. El mayorista A envía en cada contenedor 8 cajas de naranjas, 1 de plátanos y 2 de manzanas. El mayorista B envía en cada contenedor 2 cajas de naranjas, una de plátanos y 7 de manzanas. Sabiendo que el mayorista A se encuentra a 150 km de distancia y el mayorista B a 300 km, calcular cuántos contenedores habrá de comprar a cada mayorista, con objeto de ahorrar tiempo y dinero, reduciendo al mínimo la distancia de lo solicitado.
Una compañía tiene dos minas: la mina A produce diariamente 1 tonelada de carbón de antracita de alta calidad, 2 toneladas de carbón de calidad media y 4 toneladas de carbón de baja calidad; la mina B produce 2 toneladas de cada una de las tres clases. La compañía necesita 70 toneladas de carbón de alta calidad, 130 de calidad media y 150 de baja calidad. Los gastos diarios de la mina A ascienden a 150 dólares y los de la mina B a 200 dólares. ¿Cuántos días deberán trabajar en cada mina para que la función de coste sea mínima?
Imaginemos que las necesidades semanales mínimas de una persona en proteínas, hidratos de carbono y grasas son, respectivamente, 8, 12 y 9 unidades. Supongamos que debemos obtener un preparado con esa composición mínima mezclando dos productos A y B, cuyos contenidos por Kg son los que se indican en la siguiente tabla:
Proteínas Hidratos Grasas Costo/kg
A 2 6 1 600
B 1 1 3 400
a) ¿Cuántos Kg de cada producto deberán comprarse semanalmente para que el costo de preparar la dieta sea mínimo?
b) ¿Cuántos Kg de cada producto deberíamos comprar si el precio de A subiera a 1.000 pesos/Kg ?
...