Tercera ley de Newton y sus razones
Enviado por darp92 • 21 de Abril de 2018 • Ensayo • 763 Palabras (4 Páginas) • 172 Visitas
Tercera ley de Newton
Temperatura absoluta Anteriormente se discutieron las diferentes escalas de temperatura, sus puntos de referencia para construirlas y la relación entre ellas. Una escala de temperatura que es independiente de las propiedades de las sustancias utilizadas para medir la temperatura, es la que se conoce como escala termodinámica de temperatura. Para construirla se utiliza como fundamento el ciclo de Carnot. Se sabe que la eficiencia térmica de una máquina de Carnot que opera entre dos fuentes de calor a temperaturas TH y TC es independiente de la sustancia de trabajo y depende únicamente de las temperaturas.
La eficiencia térmica de dicha máquina es: 𝑒 = 1 + 𝑄𝑐 𝑄𝐻 Y es la misma para todas la máquinas de Carnot que operan entre dos temperaturas dadas 𝑇𝐻 y 𝑇𝐶. Kelvin propuso que por definición, la razón 𝑇𝐶/𝑇𝐻 fuera igual a la magnitud del cociente 𝑄𝑐 /𝑄𝐻 de las cantidades de calor absorbida y expulsada. Esta es la definición de temperatura de Kelvin, y se le llama absoluta por no depender de la sustancia utilizada. Para completar la definición de escala Kelvin, se asigna el valor arbitrario de 273.16 K a la temperatura del punto triple del agua. Cuando se lleva una sustancia por un ciclo de Carnot, la razón de los calores absorbido y expulsado es igual a la razón de temperaturas de las fuentes, expresadas en la escala de un termómetro de gas ideal. El punto cero de la escala Kelvin se denomina cero absoluto, y se puede interpretar en un nivel molecular: en el cero absoluto, el sistema tiene su mínima energía interna total posible. Sin embargo, a causa de los efectos cuánticos, no es cierto que en 𝑇=0 cese todo el movimiento molecular. Hay razones teóricas para creer que no es posible lograr el cero absoluto experimentalmente, aun cuando se hayan alcanzado temperaturas por debajo de 10-7 K.
El enunciado de la tercera Ley de la termodinámica expresa esta incapacidad: Es imposible alcanzar el cero absoluto en un número finito de pasos termodinámicos.
Procesos reversibles. Como ya se abordó anteriormente, un proceso reversible se define como un proceso que una vez efectuado puede revertirse y no produce ningún cambio en el sistema o sus alrededores. Un proceso reversible puede revertirse mediante cambios infinitesimales en alguna propiedad del sistema sin que existan pérdidas o disipación de energía. Debido a estos cambios, el sistema puede considerarse en reposo durante el proceso. Los procesos reversibles son una idealización que nunca puede lograrse perfectamente en el mundo real, pero si los gradientes de temperatura las diferencias de presión en la sustancia son muy pequeños, mantendríamos el sistema muy cerca de estados de equilibrio y haríamos que el proceso fuera casi reversible. Un ejemplo de proceso cuasi reversible se planea en el libro de Serway, y Jewett (2005): Si un proceso real ocurre muy lentamente, tal que el sistema siempre está muy cerca de un estado de equilibrio, el proceso se puede aproximar como reversible. Suponga que un gas se comprime isotérmicamente en un arreglo tipo cilindro-émbolo en que el gas está en contacto térmico con un depósito de energía y continuamente se transfiere suficiente energía del gas al depósito para mantener la temperatura constante. Imagine que el gas se comprime muy lentamente al soltar granos de arena sobre un pistón sin fricción, de manera que, conforme cae cada grano sobre el émbolo se comprime el gas una pequeña cantidad, y el sistema se desvía de su estado de equilibrio. Sin embargo, como las diferencias son muy pequeñas, todo el proceso puede pensarse como si sucediera a través de estados de equilibrio continuos. Finalmente, para regresar el proceso, basta con quitar lentamente los granos de arena. Recuerde que en un proceso reversible no hay efectos de disipación de la energía, los cuales en la realidad nuevamente, no se pueden eliminar por completo, pero si pueden hacerse muy pequeños. Recuerde que en un proceso reversible, la entropía de un sistema aislado permanece constante.
...