Tipos De Muestreo
Enviado por rafael0510 • 19 de Febrero de 2012 • 1.703 Palabras (7 Páginas) • 1.076 Visitas
CONCEPTO DE MUESTREO
El muestreo es una herramienta de la investigación científica. Su función básica es determinar que parte de una realidad en estudio (población o universo) debe examinarse con la finalidad de hacer inferencias sobre dicha población. El error que se comete debido a hecho de que se obtienen conclusiones sobre cierta realidad a partir de la observación de sólo una parte de ella, se denomina error de muestreo. Obtener una muestra adecuada significa lograr una versión simplificada de la población, que reproduzca de algún modo sus rasgos básicos.
Muestra: En todas las ocasiones en que no es posible o conveniente realizar un censo, lo que hacemos es trabajar con una muestra, entendiendo por tal una parte representativa de la población. Para que una muestra sea representativa, y por lo tanto útil, debe de reflejar las similitudes y diferencias encontradas en la población, ejemplificar las características de la misma.
Cuando decimos que una muestra es representativa indicamos que reúne aproximadamente las características de la población que son importantes para la investigación.
a. Población Los estadísticos usan la palabra población para referirse no sólo a personas si no a todos los elementos que han sido escogidos para su estudio.
b. Muestra Los estadísticos emplean la palabra muestra para describir una porción escogida de la población. Matemáticamente, podemos describir muestras y poblaciones al emplear mediciones como la Media, Mediana, la moda, la desviación estándar. Cuando éstos términos describen una muestra se denominan estadísticas.
1 - Una estadística es una característica de una muestra, los estadísticos emplean letras latinas minúsculas para denotar estadísticas y muestras.
2 - Tipos de muestreo Los autores proponen diferentes criterios de clasificación de los diferentes tipos de muestreo, aunque en general pueden dividirse en dos grandes grupos: métodos de muestreo probabilísticos y métodos de muestreo no probabilísticos.
TERMINOLOGÍA
Población objeto: conjunto de individuos de los que se quiere obtener una información.
Unidades de muestreo: número de elementos de la población, no solapados, que se van a estudiar. Todo miembro de la población pertenecerá a una y sólo una unidad de muestreo.
Unidades de análisis: objeto o individuo del que hay que obtener la información.
Marco muestral: lista de unidades o elementos de muestreo.
Muestra: conjunto de unidades o elementos de análisis sacados del marco.
Muestreo aleatorio
Consideremos una población finita, de la que deseamos extraer una muestra. Cuando el proceso de extracción es tal que garantiza a cada uno de los elementos de la población la misma oportunidad de ser incluidos en dicha muestra, denominamos al proceso de selección
El muestreo aleatorio se puede plantear bajo dos puntos de vista:
• Sin reposición de los elementos;
• Con reposición.
Muestreo aleatorio sin reposición
Consideremos una población E formada por N elementos. Si observamos un elemento particular, , en un muestreo aleatorio sin reposición se da la siguiente circunstancia:
• La probabilidad de que e sea elegido en primer lugar es ;
• Si no ha sido elegido en primer lugar (lo que ocurre con una probabilidad de ), la probabilidad de que sea elegido en el segundo intento es de .
• en el (i+1)-ésimo intento, la población consta de N-i elementos, con lo cual si e no ha sido seleccionado previamente, la probabilidad de que lo sea en este momento es de .
Si consideramos una muestra de elementos, donde el orden en la elección de los mismos tiene importancia, la probabilidad de elección de una muestra cualquiera es
lo que corresponde en el sentido de la definición de probabilidad de Laplace a un caso posible entre las VN,n posibles n-uplas de N elementos de la población.
Si el orden no interviene, la probabilidad de que una muestra
sea elegida es la suma de las probabilidades de elegir una cualquiera de sus n- uplas, tantas veces como permutaciones en el orden de sus elementos sea posible, es decir
EJEMPLO:
Se desea estimar el peso promedio de los sacos que son llenados por un nuevo instrumento en una industria. Se conoce que el peso de un saco que se llena con este instrumento es una variable aleatoria con distribución normal. Si se supone que la desviación típica del peso es de 0,5 kg. Determine el tamaño de muestra aleatoria necesaria para determinar una probabilidad igual a 0,95 de que el estimado y el parámetro se diferencien modularmente en menos de 0,1 kg.
Solución:
Muestreo aleatorio con reposición
Sobre una población E de tamaño N podemos realizar extracciones de n elementos, pero de modo que cada vez el elemento extraído es repuesto al total de la población. De esta forma un elemento puede ser extraído varias veces. Si el orden en la extracción de la muestra interviene, la probabilidad de una cualquiera de ellas, formada por n elementos es:
Si el orden no interviene, la probabilidad de una muestra cualquiera, será la suma de la anterior, repitiéndola tantas veces como manera de combinar sus elementos sea posible. Es decir,
sea n1 el número de veces que se repite cierto elemento e1 en la muestra;
sea n2 el número de veces que se repite cierto elemento e2;
sea nk el número de veces que se repite
...