ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Transformación de Galileo


Enviado por   •  27 de Agosto de 2013  •  Ensayo  •  407 Palabras (2 Páginas)  •  355 Visitas

Página 1 de 2

Transformación de Galileo

Saltar a: navegación, búsqueda

Una transformación de Galileo es un cambio de coordenadas y velocidades que deja invariante las ecuaciones de Newton. La condición anterior equivale a que la transformación entre las coordenadas de un sistema de referencia inercial y otro sistema inercial que se mueve respecto al primero sea también una transformación de Galileo.

Transformación de coordenadas[editar fuente]

Galileo propuso que si se tiene un sistema A\; en reposo y un sistema B\; en movimiento, a velocidad constante V_x\; respecto del primero a lo largo del sentido positivo del eje x\;, y si las coordenadas de un punto del espacio para A\; son (x, y, z)\; y para B\; son (x', y', z')\;, se puede establecer un conjunto de ecuaciones de transformación de coordenadas bastante sencillo.

Así, si se quiere hallar las coordenadas de B a partir de las coordenadas de A se tienen las ecuaciones:

\begin{cases} x' = x - V_xt \\ y'=y \\ z' = z \end{cases}

En cuanto al tiempo, se tiene que

t' = t \,

Las anteriores relaciones se pueden reescribir en forma matricial como:

\begin{bmatrix} t' \\ x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -V_x & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} t \\ x \\ y \\ z \end{bmatrix}

Las anteriores son las transformaciones de Galileo más simples. Generalmente se consideran transformaciones más generales, de hecho el conjunto de todas las transformaciones del tipo anterior según cualquier dirección (no necesariamente sobre el eje X) junto con las rotaciones constituyen el llamado grupo de Galileo. El grupo de Galileo completo incluyendo las traslaciones espaciales y temporales, es substancialmente más complicado que el grupo de Lorentz.

Transformaciones de otras magnitudes[editar fuente]

A diferencia de las transformaciones de Lorentz que actúan del mismo modo sobre todos los (cuadri)vectores, las transformaciones de Galileo son diferentes para diferentes vectores por ejemplo las fuerzas y las aceleraciones son invariantes bajo una transformación de Galileo simple, en cambio el momento lineal se transforma de manera similar a como lo hace el vector velocidad:

\begin{matrix} \mathbf{v}' = \mathbf{v} - \mathbf{V} & \qquad & \mathbf{a}' = \mathbf{a} \\ \mathbf{p}' = \mathbf{p} - m\mathbf{V} & \qquad & \mathbf{F}' = \mathbf{F} \end{matrix}

La energía cinética tiene una ley de transformación aún más complicada:

T' = \frac{1}{2}m{{v}'}^2 = \frac{1}{2}m\|\mathbf{v} - \mathbf{V}\|^2

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com