Una Máquina de Turing (MT)
Enviado por TikoGT • 21 de Septiembre de 2013 • Tarea • 242 Palabras (1 Páginas) • 530 Visitas
Una Máquina de Turing (MT)
M = (Q, ∑, Г, q0, T,B, δ)
Máquinas de Turing
Dónde:
1. Q es un conjunto finito de estados.
2. ∑ es el alfabeto de entrada.
3. Г es el alfabeto de la cinta, que incluye a
4. q0 ∈ Q es el estado inicial.
5. B ∈ Γ es el símbolo blanco (el símbolo B no puede hacer parte de ∑) aparece en todas las casillas excepto en aquellas que contienen los símbolos de entrada.
6. T ⊆ Q conjunto de estados finales.
7. δ es la función de transición tal que:
δ : Q × Γ → Q × Γ × {I , D}
δ(q, X ) = (p, Y, {I , D})
δ es una función parcial, es decir, No puede estar definida en algunos elementos del dominio.
Una cadena de entrada w es aceptada por una MT M si el computo que se indica la configuracion inicial q0w termina en una configuracion instant´anea w1pw2, p es un estado de aceptacion, en la cual M se detiene completamente. El lenguaje L(M ) aceptado por una MT M se define como: L(M ) = {w ∈ Σ : q0w `∗ w1pw2, p ∈ T }
M se para en w1pw2 Si la cadena de entra- da en una m´aquina M pertenece a L(M ), la m´aquina M siempre se detiene.
...