ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La Revulunciocitaa


Enviado por   •  16 de Octubre de 2013  •  207 Palabras (1 Páginas)  •  226 Visitas

Aceleración media e instantánea[editar código]

Definición de la aceleración de una partícula en un movimiento cualquiera. Obsérvese que la aceleración no es tangente a la trayectoria.

Cada instante, o sea en cada punto de la trayectoria, queda definido un vector velocidad que, en general, cambia tanto en módulo como en dirección al pasar de un punto a otro de la trayectoria. La dirección de la velocidad cambiará debido a que la velocidad es tangente a la trayectoria y ésta, por lo general, no es rectilínea. En la Figura se representan los vectores velocidad correspondientes a los instantes t y t+Δt, cuando la partícula pasa por los puntos P y Q, respectivamente. El cambio vectorial en la velocidad de la partícula durante ese intervalo de tiempo está indicado por Δv, en el triángulo vectorial al pie de la figura. Se define la aceleración media de la partícula, en el intervalo de tiempo Δt, como el cociente:

<\mathbf a>= \mathbf{\bar{a}}= \frac{\Delta \mathbf v}{\Delta t}

Que es un vector paralelo a Δv y dependerá de la duración del intervalo de tiempo Δt considerado. La aceleración instantánea se la define como el límite al que tiende el cociente incremental Δv/Δt cuando Δt→0; esto es la derivada del vector velocidad con respecto al tiempo:

...

Descargar como (para miembros actualizados) txt (1 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com