Mecánica de fluidos
Enviado por angela9661 • 12 de Abril de 2015 • 685 Palabras (3 Páginas) • 344 Visitas
a: Hola como estas, mira no se en particular en ing. Industrial; pero por ejemplo en cualquier estudio de modelización por medio de la teoría de elementos finitos o modelización por medios continuos se aplica dicha teoría.
Un ejemplo, en física los campos eléctricos y electromagnéticos son campos vectoriales.
En Mecánica de fluidos el fluido, bajo ciertas condiciones, se modeliza como un medio continuo (lo mismo se hace en Suelos, estructuras, etc.) y así se definen magnitudes cuyas identidades son precisamente CAMPOS VETORIALES, así definimos en su seno el campo de velocidades el campo de aceleraciones el campo de flujos el campo de potencias etc. etc... Y en estas modelizaciones aplicamos plenamente la teoría de espacios vectoriales.
En las estructuras (en la mecánica estructural) modelizamos las tensiones en el seno del material como espacios vectoriales, como el tensor de tensiones o el tensor de deformaciones; algunos incluso llegan a ser conservativos bajo ciertas hipótesis permitiendo el desarrollo de leyes muy útiles en el cálculo estructural.. de hecho, los programas informáticos actuales entregan al ingeniero una representación muy precisa de dichos campos indicando direcciones y magnitudes.
Un ejemplo claro, el tensor de Green Eij = (1/2) (∂Ui/∂Xj + ∂Uj/∂Xi + ∑∂Uk∂Uk/∂Xi∂Xj) es un campo vectorial. que caracteriza las deformaciones en un sólido, que siendo isótropo y homogéneo da lugar a un campo de orden 9.
Espero que te sirvaa: Hola como estas, mira no se en particular en ing. Industrial; pero por ejemplo en cualquier estudio de modelización por medio de la teoría de elementos finitos o modelización por medios continuos se aplica dicha teoría.
Un ejemplo, en física los campos eléctricos y electromagnéticos son campos vectoriales.
En Mecánica de fluidos el fluido, bajo ciertas condiciones, se modeliza como un medio continuo (lo mismo se hace en Suelos, estructuras, etc.) y así se definen magnitudes cuyas identidades son precisamente CAMPOS VETORIALES, así definimos en su seno el campo de velocidades el campo de aceleraciones el campo de flujos el campo de potencias etc. etc... Y en estas modelizaciones aplicamos plenamente la teoría de espacios vectoriales.
En las estructuras (en la mecánica estructural) modelizamos las tensiones en el seno del material como espacios vectoriales, como el tensor de tensiones o el tensor de deformaciones; algunos incluso llegan a ser conservativos bajo ciertas hipótesis permitiendo el desarrollo de leyes muy útiles en el cálculo estructural.. de hecho, los programas informáticos actuales entregan al ingeniero una representación muy precisa de dichos campos indicando direcciones y magnitudes.
Un ejemplo claro, el tensor de Green Eij = (1/2) (∂Ui/∂Xj + ∂Uj/∂Xi + ∑∂Uk∂Uk/∂Xi∂Xj) es un campo vectorial. que caracteriza las deformaciones
...