Tecnologia
Enviado por julio_stark • 23 de Enero de 2014 • 474 Palabras (2 Páginas) • 278 Visitas
INTEGRAL INDEFINIDA
Concepto de integral definida
La integral definida es un concepto utilizado para determinar el valor de las áreas limitadas por curvas y rectas. Dado el intervalo [a, b] en el que, para cada uno de sus puntos x, se define una función f (x) que es mayor o igual que 0 en [a, b], se llama integral definida de la función entre los puntos a y b al área de la porción del plano que está limitada por la función, el eje horizontal OX y las rectas verticales de ecuaciones x = a y x = b.
La integral definida de la función entre los extremos del intervalo [a, b] se denota como:
Propiedades de la integral definida
La integral definida cumple las siguientes propiedades:
• Toda integral extendida a un intervalo de un solo punto, [a, a], es igual a cero.
• Cuando la función f (x) es mayor que cero, su integral es positiva; si la función es menor que cero, su integral es negativa.
• La integral de una suma de funciones es igual a la suma de sus integrales tomadas por separado.
• La integral del producto de una constante por una función es igual a la constante por la integral de la función (es decir, se puede «sacar» la constante de la integral).
• Al permutar los límites de una integral, ésta cambia de signo.
• Dados tres puntos tales que a < b < c, entonces se cumple que (integración a trozos):
• Para todo punto x del intervalo [a,b] al que se aplican dos funciones f (x) y g (x) tales que f (x) £ g (x), se verifica que:
Ilustración gráfica del concepto de integral definida.
Función integral
Considerando una función f continua en [a, b] y un valor x Î [a, b], es posible definir una función matemática de la forma:
donde, para no inducir a confusión, se ha modificado la notación de la variable independiente de x a t. Esta función, simbolizada habitualmente por F (x), recibe el nombre de función integral o, también, función área pues cuando f es mayor o igual que cero en [a, b], F (x) nos da el área.
Interpretación geométrica de la función integral o función área.
Teorema fundamental del cálculo integral
La relación entre derivada e integral definida queda establecida definitivamente por medio del denominado teorema fundamental del cálculo integral, que establece que, dada una función f (x), su función integral asociada F (x) cumple necesariamente que:
A partir del teorema fundamental del cálculo integral es posible definir un método para calcular la integral definida de una función f (x) en un intervalo [a, b], denominado regla de Barrow:
• Se busca primero una función F (x) que verifique que F¿ (x) = f (x).
• Se calcula el valor de esta función en los extremos del intervalo: F (a) y F (b).
• El
...