ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La Abuela


Enviado por   •  18 de Octubre de 2012  •  290 Palabras (2 Páginas)  •  295 Visitas

Página 1 de 2

Límite infinito

Una función f(x) tiene por límite +∞ cuando x a, si fijado un número real positivo K>0 se verifica que f(x)>k para todos los valores próximos a a.

Límite menos infinito

Una función f(x) tiene por límite -∞ cuando x a, si fijado un número real negativo K < 0 se verifica que f(x) < k para todos los valores próximos a a.

Límite de una función en un punto

El límite de la función f(x) en el punto x0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x0. Es decir el valor al que tienden las imágenes cuando los originales tienden a x0.

Vamos a estudiar el límite de la función f(x) = x2 en el punto x0 = 2.

x f(x)

1,9 3,61

1,99 3,9601

1,999 3,996001

... ...

↓ ↓

2 4

x f(x)

2,1 4.41

2,01 4,0401

2,001 4,004001

... ...

↓ ↓

2 4

Tanto si nos acercamos a 2 por la izquierda o la derecha las imágenes se acercan a 4.

Se dice que la función f(x) tiene como límite el número L , cuando x tiende a x0, si fijado un número real positivo ε , mayor que cero, existe un numero positivo δ dependiente de ε , tal que, para todos los valores de x distintos de x0 que cumplen la condición |x - x0| < δ , se cumple que |f(x) - L| <ε .

También podemos definir el concepto de límite a través de entornos:

si y sólo si, para cualquier entorno de L que tomemos, por pequeño que sea su radio ε, existe un entorno de x0, Eδ(x0), cuyos elementos (sin contar x0), tienen sus imágenes dentro del entorno de L, Eε(L).

Límite de la función exponencial

Si a > 0

Si 0 < a < 1

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com