ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Linea Recta


Enviado por   •  3 de Marzo de 2014  •  413 Palabras (2 Páginas)  •  285 Visitas

Página 1 de 2

FUNCION DE LA RECTA:

En geometría y el álgebra elemental, una función lineal es una función polinómica de primer grado; es decir, una función cuya representación en el plano cartesiano es una línea recta. Esta función se puede escribir como:

donde m y b son constantes reales y x es una variable real. La constante m es la pendiente de la recta, y b es el punto de corte de la recta con el eje y. Si se modifica m entonces se modifica la inclinación de la recta, y si se modifica b, entonces la línea se desplazará hacia arriba o hacia abajo.

Algunos autores llaman función lineal a aquella con b= 0 de la forma:

mientras que llaman función afín a la que tiene la forma:

Cuando b es distinto de cero.

Una función lineal de una única variable dependiente x es de la forma

Que se conoce como ECUACION D ELA RECTA en el plano x,y.

En la figura se ven dos rectas, que corresponden a las ecuaciones lineales siguientes:

En esta recta el parámetro m= 1/2 por tanto de pendiente 1/2, es decir, cuando aumentamos x en una unidad entonces y aumenta en 1/2 unidad, el valor de b es 2, luego la recta corta el eje y en el punto y= 2.

En la ecuación:

La pendiente de la recta es el parámetro m= -1, es decir, cuando el valor de x aumenta en una unidad, el valor de y disminuye en una unidad; el corte con el eje y es en y= 5, dado que el valor de b= 5.

En una recta el valor de m se corresponde al ángulo de inclinación de la recta con el eje de las x a través de la expresión:

FORMA QUE TIENE EL PLANO:

EJEMPLO:

Para localizar puntos en el plano cartesiano se debe llevar a cabo el siguiente procedimiento:

1. Para localizar la abscisa o valor de x, se cuentan las unidades correspondientes hacia la derecha si son positivas o hacia a izquierda si son negativas, a partir del punto de origen, en este caso el cero.

2. Desde donde se localiza el valor de x, se cuentan las unidades correspondientes hacia arriba si son positivas o hacia abajo, si son negativas y de esta forma se localiza cualquier punto dadas sus coordenadas.

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com