PRUEBAS DE HIPÓTESIS CON DOS MUESTRAS Y VARIAS MUESTRAS DE DATOS NUMERICOS
Enviado por beddjfivjmdkf • 10 de Junio de 2014 • 1.465 Palabras (6 Páginas) • 514 Visitas
INSTITUTO TECNOLOGICO SUPERIOR
ING. GESTION EMPRESARIAL
INVESTIGACION DE 4 UNIDAD
ESTADISTICA INFERENCIAL I
UNIDAD 4 PRUEBAS DE HIPÓTESIS CON DOS MUESTRAS Y VARIAS MUESTRAS DE DATOS NUMERICOS
4.1 Introducción.
El propósito de la prueba de hipótesis es determinar si el valor supuesto ( hipotético ) de un parámetro poblacional, como la media de la población, debe aceptarse como verosímil con base a evidencias muéstrales.
En esta unidad nos concentraremos en la prueba de hipótesis, otro aspecto de la inferencia estadística que al igual que la estimación del intervalo de confianza, se basa en la información de la muestra. Se desarrolla una metodología paso a paso que le permita hacer inferencias sobre un parámetro poblacional mediante el análisis diferencial entre los resultados observados (estadístico de la muestra) y los resultados de la muestra esperados si la hipótesis subyacentes realmente cierta. En el problema de estimación se trata de elegir el valor de un parámetro de la población, mientras que en las pruebas de hipótesis se trata de decidir entre aceptar o rechazar un valor especificado (por ejemplo, si el nivel de centra miento de un proceso es o no lo es).Prueba de hipótesis: Estadísticamente una prueba de hipótesis es cualquier afirmación acerca de una población y/o sus parámetros.
4.2 Distribución normal y T de student
D. normal.- Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada por la frecuencia o normalidad con la que ciertos fenómenos tienden a parecerse en su comportamiento a esta distribución.
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
En otras ocasiones, al considerar distribuciones binomiales, tipo B(n,p), para un mismo valor de p y valores de n cada vez mayores, se ve que sus polígonos de frecuencias se aproximan a una curva en "forma de campana".
En resumen, la importancia de la distribución normal se debe principalmente a que hay muchas variables asociadas a fenómenos naturales que siguen el modelo
D t-student.- Necesitaba una distribución que pudiera usar cuando el tamaño de la muestra fuera pequeño y la varianza desconocida y tenía que ser estimada a partir de los datos. Las distribuciones t se usan para tener en cuenta la incertidumbre añadida que resulta por esta estimación. Fisher comprendió la importancia de los trabajos de Gosset para muestras pequeñas.
Si el tamaño de la muestra es n entonces decimos que la distribución t tiene n-1 grados de libertad. Hay una distribución t diferente para cada tamaño de la muestra. Estas distribuciones son una familia de distribuciones de probabilidad continuas. Las curvas de densidad son simétricas y con forma de campana como la distribución normal estándar. Sus medias son 0 y sus varianzas son mayores que 1 (tienen colas más pesadas). Las colas de las distribuciones t disminuyen más lentamente que las colas de la distribución normal. Si los grados de libertad son mayores más próxima a 1 es la varianza y la función de densidad es más parecida a la densidad normal.
Cuando n es mayor que 30, la diferencia entre la normal y la distribución t de Student no suele ser muy importante.
4.3 pruebas de significancia
Las pruebas de significancia estadística proporcionan una estimación de la frecuencia con que podrían ocurrir por azar los resultados experimentales. Los resultados de una prueba de este tipo se plantean como una prueba de probabilidad, indicando las posibilidades de que la diferencia observada se haya debido al azar. En psicología se considera de gran importancia cualquier resultado experimental que ocurriera por azar cinco veces de cada 100
4.4 Comparación de dos muestras independientes pruebas t para las diferencias entre dos medias.
t=x1x2σ1 n1 + 1n2 donde σ=n1s12+ n2s22n1+ n2-2
El I. Q. (cociente de inteligencia) de 16 estudiantes de una zona de una ciudad dio una media de 107 con una desviación típica de 10, mientras que el L Q. de 14 estudiantes de otra zona de la ciudad dio una media de 112 con desviación típica de 8. ¿Hay diferencia significativa entre el I. Q. de los dos grupos al nivel de significación del (o) 0.01, y (b) 0.05? Si se denota por µ1 y µ2 las medias poblacionales del I.Q. de los estudiantes de las dos zonas, se tiene que decidir entre las hipótesis Ho: µ1 = µ2 no hay diferencia esencial entre los grupos
H1: µ1 ≠ µ2 no hay diferencia
...