ASÍNTOTAS DE UNA FUNCIÓN
Enviado por RUIZCOTA • 21 de Julio de 2013 • 477 Palabras (2 Páginas) • 363 Visitas
ASÍNTOTAS DE UNA FUNCIÓN
________________________________________
Las asíntotas son rectas a las cuales la función se va aproximando indefinidamente, cuando por lo menos una de las variables (x o y) tienden al infinito.
Una definición más formal es:
DEFINICIÓN
Si un punto (x,y) se desplaza continuamente por una función y=f(x) de tal forma que, por lo menos, una de sus coordenadas tienda al infinito, mientras que la distancia entre ese punto y una recta determinada tiende a cero, esta recta recibe el nombre de asíntota de la función.
Las asíntotas se clasifican en:
Asíntotas verticales (paralelas al eje OY)
Si existe un número “a” tal, que :
La recta “x = a” es la asíntota vertical.
Ejemplo:
es la asíntota vertical.
Asíntotas horizontales (paralelas al eje OX)
Si existe el límite: :
La recta “y = b” es la asíntota horizontal.
Ejemplo:
es la asíntota horizontal.
Asíntotas oblicuas (inclinadas)
Si existen los límites: :
ASÍNTOTAS DE UNA FUNCIÓN
________________________________________
Las asíntotas son rectas a las cuales la función se va aproximando indefinidamente, cuando por lo menos una de las variables (x o y) tienden al infinito.
Una definición más formal es:
DEFINICIÓN
Si un punto (x,y) se desplaza continuamente por una función y=f(x) de tal forma que, por lo menos, una de sus coordenadas tienda al infinito, mientras que la distancia entre ese punto y una recta determinada tiende a cero, esta recta recibe el nombre de asíntota de la función.
Las asíntotas se clasifican en:
Asíntotas verticales (paralelas al eje OY)
Si existe un número “a” tal, que :
La recta “x = a” es la asíntota vertical.
Ejemplo:
es la asíntota vertical.
Asíntotas horizontales (paralelas al eje OX)
Si existe el límite: :
La recta “y = b” es la asíntota horizontal.
Ejemplo:
es la asíntota horizontal.
Asíntotas oblicuas (inclinadas)
Si existen los límites: :
ASÍNTOTAS DE UNA FUNCIÓN
________________________________________
Las asíntotas son rectas a las cuales la función se va aproximando indefinidamente, cuando por lo menos una de las variables (x o y) tienden al infinito.
Una definición más formal es:
DEFINICIÓN
Si un punto (x,y) se desplaza continuamente por una función y=f(x) de tal forma que, por lo menos, una de sus coordenadas tienda al infinito, mientras que la distancia entre ese punto y una recta determinada tiende a cero, esta recta recibe el nombre de asíntota
...