Computacion
Enviado por carloserazo • 18 de Febrero de 2015 • 1.474 Palabras (6 Páginas) • 148 Visitas
UNIVERSIDAD DE GUAYAQUIL
FACULTAD DE CIENCIAS ECONOMICAS
MATEMATICAS
NOMBRE: CARLOS ERAZO ZAPATA CURSO: 1/8 FECHA: 13/02/2015
-DEFINICION Y PROPIEDADES DE LÍMITES FINITOS E INFINITOS
En matemática, el concepto de límite es una noción topológica que formaliza la noción intuitiva de aproximación hacia un punto concreto de una sucesión o una función, a medida que los parámetros de esa sucesión o función se acercan a determinado valor.
En cálculo infinitesimal (especialmente en análisis real y matemático) este concepto se utiliza para definir los conceptos fundamentales de convergencia, continuidad, derivación, integración, entre otros. Si bien, el concepto de límite parece intuitivamente relacionado con el concepto de distancia, en un espacio euclídeo, es la clase de abiertos inducidos por dicha métrica, lo que permite definir rigurosamente la noción de límite.
Para fórmulas, el límite se utiliza usualmente de forma abreviada mediante lim como en lim(an) = a o se representa mediante la flecha (→) como en an → a.
Límite finito
limx->a f(x)=b <=> para todo ε>0 existe δ>0 / para todo x, 0 < |x-a| < δ |f(x) - b| < ε. Otra notación:
limx->a f(x)=b <=> para todo Eb,ε existe un E*a,δ / para todo x perteneciente al E*a,δ f(x) pertenece a Eb,ε.
Se dice que la función f(x) tiene límite b, cuando x tiende a a, si dado ε positivo arbitrario y tan pequeño como se quiera, existe un δ tal que para todo x perteneciente al entorno reducido de a de radio δ, la función pertenece al entorno de b de radio ε.
Dicho de otro modo, para cualquier número positivo ε, por pequeño que sea, podemos encontrar un δ tal que para todos los x dentro del entorno reducido de a de radio δ se cumple que f(x) está dentro del entorno de b de radio ε.
limx->af(x)=b significa que por más pequeño que sea el entorno considerado alrededor de b, va a ser posible encontrar un entorno de a, para cuyos valores x (x ≠ a), la función f da como resultado valores que están dentro del entorno de b considerado.
En otras palabras, la función f(x) tiene límite b, cuando x tiende a a, si el valor de la función f(x) se hace arbitrariamente próximo al valor b cuando x se aproxima al valor a.
Notar que la definición dice entorno reducido de a. Es decir que f(a) puede no existir, o puede estar fuera del entorno de b, pero el límite de f cuando x tiende a a sigue siendo b.
f(a) ≠ b, pero limx->af(x)=b
Límite infinito
Caso 1:
limx->af(x) = +inf <=> para todo A > 0 existe δ > 0 / para todo x perteneciente al E*a,δ f(x) > A.
El límite de f(x) cuando x->a es infinito positivo, si para cualquier número positivo A (tan grande como se quiera), podemos encontrar un número δ tal que, para todos los x dentro del entorno reducido de a de radio δ se cumple que f(x) es mayor que A.
En otras palabras, si para cualquier número positivo A que consideremos, existe un entorno reducido de a donde la función vale más que A, quiere decir que f(x) puede hacerse mayor que cualquier número, con tal de que x se acerque lo suficiente a a. Por eso se dice que el límite de
f(x) cuando x tiende a a es +inf.
Caso 2:
limx->af(x) = -inf <=> para todo A > 0 existe δ > 0 / para todo x perteneciente al E*a,δ f(x) < -A.
Caso 3:
limx->+inff(x) = +inf <=> para todo A > 0 existe B > 0 / para todo x > B f(x) > A.
Para cualquier número positivo A (por grande que sea), es posible encontrar un número positivo B tal que para todos los x mayores que B, f(x) es mayor que A. Es decir que f(x) puede ser mayor que cualquier número, si x es lo suficientemente grande.
Caso 4
limx->+inff(x) = -inf <=> para todo A > 0 existe B > 0 / para todo x > B f(x) < -A.
Caso 5:
limx->-inff(x) = +inf <=> para todo A > 0 existe B > 0 / para todo x < -B f(x) > A.
Caso 6:
limx->-inff(x) = -inf <=> para todo A > 0 existe B > 0 / para todo x < -B f(x) < -A.
Caso 7:
limx->+inff(x) = b <=> para todo ε > 0 existe B > 0 / para todo x > B f(x) pertenece al Eb,ε.
Caso 8:
limx->-inff(x) = b <=> para todo ε > 0 existe B > 0 / para todo x < -B f(x) pertenece al Eb,ε.
...