ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Estadistica_Empresarial


Enviado por   •  25 de Diciembre de 2020  •  Trabajo  •  649 Palabras (3 Páginas)  •  100 Visitas

Página 1 de 3

[pic 1][pic 2]

INSTITUTO PROFESIONAL PROVIDENCIA

ESCUELA DE INGENIERÍA Y GESTIÓN

Ingeniería en Administración de empresas con mención Finanzas y Marketing.

MÓDULO 3

  • Ejercicio 1.-

Considerando las variables bidimensionales, de un país con una gran desaceleración económica se tiene que: X = "Cantidad de Farmacias por comuna” e Y =” cantidad de habitantes por comuna” (en miles)

Σ 𝒙 = 𝟗𝟕𝟖, 𝟗 Σ 𝒚 = 𝟐𝟖𝟖𝟔, 𝟒 Σ 𝒙𝒚 = 𝟖𝟗𝟑𝟖, 𝟒 Σ 𝒙𝟐 = 𝟏𝟕𝟓𝟔𝟗, 𝟗 Σ 𝒚𝟐 = 𝟏𝟕𝟐𝟐𝟗𝟏, 𝟐

  1. Obtener la recta de regresión que explica la cantidad de farmacias por comuna en función de la cantidad de habitantes por cada comuna.
  2. Interpretar los coeficientes de la recta estimada.
  3. Obtener una medida del ajuste e interpretar si éste es bueno.

NO PUDIMOS RESOLVER EL EJERCICIO POR FALTA DE LA INFORMACION DE DATOS, ADEMAS DE LOS PROMEDIOS DE X e Y.


  • Ejercicio 2.-

El Registro Civil de Chile mediante una encuesta de satisfacción aplicada a 5 personas de distintas regiones del país, ha realizado un estudio sobre la cantidad de trámites que se pueden realizar en el portal de internet por cierta cantidad de minutos de conexión en él.

Este estudio considera que el número de trámites (X) que se pueden realizar con una buena conexión de internet en función de la cantidad de minutos de conexión en este mismo portal.

Cantidad de tramites (X)

5

7

2

1

9

Tiempo en minutos (Y)

15

18

10

8

20

  1. Calcula el coeficiente de correlación lineal.

Para calcular la correlación lineal determinaremos ciertos valores que nos ayudaran

x

y

xy

x^2

y^2

desv. X

desv. Y

cov xy

5

15

75

25

225

0,04

0,64

0,16

7

18

126

49

324

4,84

14,44

8,36

2

10

20

4

100

7,84

17,64

11,76

1

8

8

1

64

14,44

38,44

23,56

9

20

180

81

400

17,64

33,64

24,36

Suma

24

71

409

160

1113

44,8

104,8

68,2

Promedio

4,8

14,2

Con la siguiente formula determinaremos la regresión lineal:

[pic 3]

Primero deberemos obtener los valores de b0  y b1, con las formulas:

Para b1:

[pic 4]

[pic 5]

[pic 6]

[pic 7]

[pic 8]

Para determinar b0 :

                                         [pic 9]

...

Descargar como (para miembros actualizados) txt (4 Kb) pdf (134 Kb) docx (575 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com