ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Las funciones trigonométricas


Enviado por   •  15 de Octubre de 2012  •  896 Palabras (4 Páginas)  •  433 Visitas

Página 1 de 4

0.INTRODUCCIÓN

Las funciones trigonométricas surgen de una forma natural al estudiar el triángulo rectángulo y observar que las razones (cocientes) entre las longitudes de dos cualesquiera de sus lados sólo dependen del valor de los ángulos del triángulo. Pero vayamos por partes.

Primero consideraremos triángulos rectángulos ABC, rectángulos en A, con <B = 60º y <C = 30º. Todos los triángulos que dibujemos con estos ángulos son semejantes, y, por ello, las medidas de sus lados proporcionales:

Esto quiere decir que si calculamos en el primer triángulo AC/BC obtendremos el mismo resultado que si calculamos en el segundo triángulo el cociente A'C'/B'C'. Se supone que esto lo conoces de cursos anteriores, pero si eres desconfiado y el razonamiento no te convence del todo, tienes algunas posibilidades:

Una consiste en dibujar con mucho cuidadito triángulos distintos con ángulos 90º, 60º y 30º y calcular los resultados de las divisiones anteriores (el cateto opuesto al ángulo de 60º dividido por la longitud de la hipotenusa) para así comprobar que siempre se obtiene el mismo resultado (aprox 0.87).

Otra posibilidad es hacer exactamente lo mismo pero dibujando triángulos, midiendo y dividiendo las longitudes con ayuda de algún programa informático (Cabri, Dr.Geo, etc.).

Otra es ir hasta el primer applet que te encuentres en esta página (pero sin saltarte lo que viene a continuación).

Si realizamos las mismas divisiones en triángulos rectángulos con ángulos distintos a los anteriores (por ejemplo: 90º, 40º, 50º) veremos que sucede lo mismo: al dividir la longitud del cateto opuesto al ángulo de 40º entre la longitud de la hipotenusa se obtiene siempre el mismo resultado (aprox 0.64).

A ese valor constante que se obtiene al dividir la longitud del cateto opuesto al ángulo de 40º entre la longitud de la hipotenusa se le llama seno de 40º, y se escribe sen(40º) = 0.64.

(Estas explicaciones se tratarán con más detalle en clase y a partir de aquí definiremos las razones trigonométricas de ángulos agudos de triángulos rectángulos).

1. DEFINICIÓN DE LAS RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS:

En un triángulo rectángulo se define como seno de un ángulo agudo al valor obtenido al dividir la longitud del cateto opuesto al ángulo entre la longitud de la hipotenusa.

Se define como coseno de un ángulo agudo al valor obtenido al dividir la longitud del cateto contiguo al ángulo entre la longitud de la hipotenusa.

Se define como tangente de un ángulo agudo de un triángulo rectángulo al valor del cociente obtenido al dividir la longitud del cateto opuesto entre la longitud del cateto contiguo.

sen(B) = AC/BC

cos(B) = BA/BC

tan(B) = AC/BA

Estudiaremos inmediatamente algunas de las propiedades importantes de las razones trigonométricas, así como algunas de sus aplicaciones prácticas.

Pero antes de continuar verás a continuación un applet que te permitirá dibujar triángulos rectángulos en los que el valor de un ángulo agudo lo fijas tú, el tamaño

...

Descargar como (para miembros actualizados) txt (6 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com