ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Oferta y Demanda Agregada


Enviado por   •  9 de Noviembre de 2020  •  Documentos de Investigación  •  5.907 Palabras (24 Páginas)  •  106 Visitas

Página 1 de 24

[pic 1]

En estecapítulo nos ocupamos de estudiar la determinaciónde la producción amediano plazo. Partiendo del equilibrio en los mercados de bienes y de dinero, se incorpora una curva de oferta agregada al análisis de la demanda agregada en una economía abierta con libre movilidad internacional de capitales.

LA DEMANDA AGREGADA

La demanda agregada muestra la relación inversa entre la demanda total de bienes y servicios y el nivel de precios de una economía. Como sabemos, la demanda agregada está compuesta de los distintos tipos de gasto agregado: el consumo, la inversión, el gasto del gobierno y las exportaciones netas.

Es importante resaltar que, en cada punto de la curva de demanda agregada, el mercado de bienes y de dinero se encuentra en equilibrio.

[pic 2]

[pic 3]

[pic 4]

Función consumo: Función inversión: Gasto del gobierno: Tributación Exportaciones: Importaciones:

Tipo de cambio:

Gasto o demanda agregada:


C = C0 + bYd I = I0  hr

G = G0

T = tY

X = x1Y* + x2e M = m1Yd  m2e e = e0  ρ(r  r*)

(paridad descubierta de tasas de interés)

DA = C + I + X  M

[pic 5]

La curva de demanda agregada y el modelo IS-LM

r[pic 6]

LM (π e, P )[pic 7]

LM (πe , P )[pic 8]

LM (π e, P )

A        0        2[pic 9]

0

B[pic 10]

1

r2        C

IS

Y2        Y[pic 11][pic 12]

P

P0 P1[pic 13][pic 14]

P2        C

DA

Y0        Y1        Y2        Y

En el Capítulo 7, como resultado de hallar el equilibrio simultáneo en los mercados de bienes y dinero, llegamos a la siguiente expresión:

 k        [1 (b  m1)(1 t)]        [C0 + G0 + I0 + x1 Y * + (x2 + m2 )e0 + ρ (x2 + m 2 )r*][pic 15]

+ [h + ρ(x


+ m ] Y =


[h + ρ (x


+ m )]

        2[pic 16]

e        1 M s


2        ⎥⎦        2        2

[pic 17]

+π  +        0

j  P

Para hallar la relación entre la producción y los precios hacemos uso de:

ϕ = [C0+ G +0   I +0 x Y * + (x + 2m )e +2   ρ0(x + m2 )r*] 2[pic 18]

θ = h + ρ(x2 + m2)

Despojamos Y en función de P:

kθ + j[1 (b  m1)(1 t)]        φ + θπe        1 M s[pic 19][pic 20]

jθ

Y =        j φ+θπ e


Y =        θ

+ 1


[pic 21]

  • P        j0

θ M0s

kθ + j[1 (b  m )(1 t)]        P        [        ]

1        kθ +  j 1 (b  m1 )(1 t)

kθ + j[1 (b  m )(1 t)]Y = θ M s  + j φ + θπ e [pic 22]

        1                P                

...

Descargar como (para miembros actualizados) txt (34 Kb) pdf (756 Kb) docx (1 Mb)
Leer 23 páginas más »
Disponible sólo en Clubensayos.com