¡Obtén Gemas Gratis!
Enviado por cacamichtle • 4 de Octubre de 2013 • 454 Palabras (2 Páginas) • 266 Visitas
En matemáticas, dos figuras de puntos son congruentes si tienen los lados iguales y el mismo tamaño (o también, están relacionados por un movimiento) si existe una isometría que los relaciona: una transformación que es de translaciones, rotaciones y reflexiones. Por así decirlo, dos figuras son congruentes si tienen la misma forma y tamaño, aunque su posición u orientación sean distintas. Las partes coincidentes de las figuras congruentes se llaman homólogas o correspondientes.
Definición de congruencia en geometría analítica
En la geometría euclidiana, la congruencia es fundamental; es lo equivalente a igualdad matemática en aritmética y álgebra. En geometría analítica, la congruencia puede ser definida así: dos figuras determinadas por puntos sobre un sistema de coordenadas cartesianas son congruentes si y solo si, para cualquier par de puntos en la primera figura, la distancia euclidiana entre ellos es igual a la distancia euclidiana entre los puntos correspondientes en la segunda figura.
Una definición más formal: dos subconjuntos A y B de un espacio euclídeo Rn son llamados congruentes si existe una isometría f : Rn → Rn (un elemento del grupo euclideo E(n)) con f(A) = B.
Ángulos congruentes
Los ángulos α y β son congruentes y opuestos por el vértice.
Los ángulos opuestos de un paralelogramo son congruentes. En esta imagen podemos ver que están marcados por el mismo color.
Los ángulos opuestos por el vértice son un ejemplo de ángulos congruentes. Las diagonales de un paralelogramo configuran ángulos opuestos por el vértice congruentes.
Congruencia de triángulos
La congruencia de triángulos estudia los casos en que dos o más triángulos presentan ángulos y lados de igual medida o congruentes.
Dos triángulos son congruentes si sus lados correspondientes tienen la misma longitud y sus ángulos correspondientes tienen la misma medida.
Si el triángulo ABC es congruente al triángulo DEF, la relación puede ser escrita matemáticamente así:
En muchos casos es suficiente establecer la igualdad entre tres partes correspondientes y usar uno de los siguientes criterios para deducir la congruencia de dos triángulos.
Criterios de congruencia de triángulos
Las condiciones mínimas que deben cumplir dos triángulos para que sean congruentes se denominan criterios de congruencia, los cuales son:
Criterio LAL: Dos triángulos son congruentes si dos de sus lados tienen la misma longitud de sus homólogos, y el ángulo comprendido entre ellos tiene la misma medida de su homólogo.
Criterio ALA: Si dos ángulos y el lado entre ellos son respectivamente congruentes con los mismos de
...