La Teoria Del Desparche
Enviado por camilo06281994 • 26 de Noviembre de 2014 • 741 Palabras (3 Páginas) • 203 Visitas
27. 4 Capítulo 1 Ecuaciones lineales en álgebra lineal Por supuesto, la intersección de dos rectas no debe darse necesariamente en un solo punto —las rectas pueden ser paralelas o coincidir y, por lo tanto, “intersecar” en todos los puntos sobre la recta. En la figura 2 se muestran las gráficas que corresponden a los siguientes sistemas: x1 − 2x2 = −1 −x1 + 2x2 = 3 (a) x 1 − 2x2 = −1 (b) −x1 + 2x2 = x2 x2 2 l2 1 2 3 x1 l1 3 x1 l1 (b) (a) FIGURA 2 (a) Sin solución. (b) Con infinidad de soluciones. Las figuras 1 y 2 ilustran los siguientes hechos generales acerca de los sistemas lineales, los cuales serán verificados en la sección 1.2. Un sistema de ecuaciones lineales puede 1. no tener solución, o 2. tener exactamente una solución, o 3. tener una cantidad infinita de soluciones. Se dice que un sistema de ecuaciones lineales es consistente si tiene una solución o una infinidad de soluciones; un sistema es inconsistente cuando no tiene ninguna solución. Notación matricial La información esencial de un sistema lineal puede registrarse de manera compacta en un arreglo rectangular llamado matriz. Dado el sistema x1 − 2x2 + x3 = 0 2x2 − 8x3 = 8 −4x1 + 5x2 + 9x3 = −9 (3) con los coeficientes de cada variable alineados en columnas, la matriz ⎡ ⎤ 1 −2 1 ⎣ 0 2 −8 ⎦ −4 5 9 01 Maq. Cap. 01(LAY).indd 4 10/13/06 12:12:58 AM
28. 1.1 Sistemas de ecuaciones lineales se denomina matriz coeficiente (o matriz de coeficientes) del sistema (3), y ⎡ ⎤ 1 −2 1 0 ⎣ 0 2 −8 8⎦ −4 5 9 −9 5 (4) se denomina matriz aumentada del sistema. (Aquí, la segunda fila contiene un cero porque la segunda ecuación podría escribirse como 0·x1 + 2x2 − 8x3 = 8.) La matriz aumentada de un sistema consta de su matriz de coeficientes con una columna adicional que contiene las constantes de los lados derechos de las ecuaciones. El tamaño de una matriz indica el número de filas y columnas que la integran. La matriz aumentada (4) que se presentó líneas arriba tiene 3 filas y 4 columnas y se conoce como una matriz de 3 × 4 (se lee “3 por 4”). Si m y n son enteros positivos, una matriz m × n es un arreglo rectangular de números con m filas y n columnas. (El número de filas siempre va primero.) La notación matricial simplificará los cálculos de los ejemplos que se presentan enseguida. Resolución de un sistema lineal En esta sección y en la siguiente se describe un algoritmo, o procedimiento sistemático, para resolver sistemas lineales. La estrategia básica es reemplazar un sistema con un sistema equivalente (es decir, uno con el mismo conjunto solución) que sea más fácil de resolver. Dicho de manera sencilla, utilice el término x1 que esté presente en la primera ecuación de un sistema para eliminar los términos x1 que haya en las otras ecuaciones. Después use el término x2 presente en la segunda ecuación para eliminar los términos x2 en las otras ecuaciones, y así sucesivamente, hasta que
...