ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

TV-1 Huamancha CPEL- Conta. Gerencial.


Enviado por   •  10 de Marzo de 2018  •  Ensayo  •  3.034 Palabras (13 Páginas)  •  248 Visitas

Página 1 de 13

EJERCICIOS CPM Y PERT

Ejemplo 1: Dibujo de la Red CPM

Se ha organizado un equipo de proyectos en Manufacturing Technology (MTI) para diseñar y desarrollar una versión ligeramente distinta de uno del robot industrial de la empresa. El nuevo robot se conoce como Random Access Mobile Orthogonal Vision (RAMOV). Ramov es móvil, tiene capacidad visual, es multiaxial y es programable en el piso de la planta. Uno de los clientes más importantes de MTI, un gran fabricante automotriz, planea reemplazar en cinco fábricas un banco de máquinas con los nuevos robots, en sus líneas de ensamble. El cliente desea ver en dos meses una demostración del robot, una propuesta técnica y una propuesta de costo. Lo primero que hizo el equipo del proyecto fue enlistar y describir sus actividades, determinar su orden y estimar cuán tiempo tomaría cada una de las actividades. Esta información sobre actividades y eventos del proyecto aparecen en la tabla que incluimos a continuación. Preparare un programa CPM partiendo de la información de dicha tabla.

Actividad

Actividades predecesoras

inmediatas

Duración de la actividad (días)

a

-

20

b

a

10

c

b

8

d

a

11

e

c,d

7

f

e

6

g

d

12

h

e

13

i

g,h

5

Evento:

  1. El proyecto se ha iniciado.
  2. El diseño RAMOV se ha terminado.
  3. Las unidades prototipo se han construido.
  4. Las pruebas de prototipo se han terminado
  5. Se han completado las estimaciones de materiales.
  6. La afinación del diseño RAMOV está terminada.
  7. La propuesta técnica y las estimaciones de costo de mano de obra están terminadas.
  8. Las unidades RAMOV se han demostrado y se ha entregado la propuesta al cliente. El proyecto se ha terminado.


Solución:

[pic 1]

Note que tanto la actividad c como la actividad d son predecesores inmediatos de la actividad e. Para mostrar que la actividad d debe quedar terminada antes del inicio de la Terminal e, se utiliza una actividad falsa. Una actividad ficticia no involucra trabajo ni tiempo; simplemente muestra la relación de precedencia, es decir, el orden de las actividades.

Ejemplo 2: Análisis de las trayectorias.

Ahora que en el ejemplo 1 se desarrolló el diagrama de red para el proyecto RAMOV, analice las trayectorias a través de la red. Determine cuál de ellas es la ruta crítica y cuanto se espera que tome la terminación del proyecto.

Solución:

1. Primero, escriba la duración de cada actividad debajo de su flecha. Por ejemplo a = 20 se escribe debajo de la flecha a:

[pic 2]

2. A continuación, identifique las trayectorias y calcule la duración de cada trayectoria:

Trayectorias

Duración de las trayectorias (días)

a-b-c-e-f

20 + 10 + 8 + 7 + 6 = 51

a-b-c-e-h-i

20 + 10 + 8 + 7 + 13 + 5 = 63*

a-d-e-f

20 + 11 + 7 + 6 = 44

a-d-e-h-i

20 + 11 + 7 + 13 + 5 = 56

a-d-g-i

20 + 11 + 12 + 5 = 48

* Ruta crítica

La trayectoria más larga es de 64 días, y se trata de la ruta crítica, que determina la duración de todo el proyecto; por lo tanto, se espera que el proyecto demore 63 días en terminarse.


Ejemplo 3: Cálculo de la terminación más temprana (EF) de as actividades.

De la red en ejemplo calcule la terminación más temprana (EF) de cada actividad. Escriba la EF de cada actividad en la parte izquierda del recuadro sobre su flecha. Empiece por el evento 1 y muévase de izquierda a derecha por la red para determinar el valor de EF correspondiente a la actividad. La EF representa el tiempo transcurrido más temprano desde el inicio del proyecto en el que podamos terminar una actividad. Para todas las actividades que empiezan un proyecto, sus EF son iguales a sus duraciones. Por ejemplo, la EF de la actividad a es 20, lo mismo que su duración, puesto que es la actividad con que empieza el proyecto. Para las demás actividades, la EF de una actividad es la EF de su predecesor inmediato más su duración (D). Calculemos los valores de EF:

[pic 3]

        EFa = 20

        EFb = EFa + Db = 20 + 10 = 30

        EFc = EFb + Dc = 30 + 8  = 38

        EFd = EFa + Dd = 20 + 11 = 31

        EFe = EFc + De = 38 + 7  = 45

        EFf = Efe + Df = 45 + 6  = 51

        EFg = EFd + Dg = 31 + 12 = 43

        EFh = Efe + Dh = 45 + 13 = 58

        EFi = Efh + Di = 58 + 5  = 63

Observe que cuando una actividad tiene dos o más actividades inmediatamente predecesoras, para el cálculo de su EF deberá utilizarse la EF más grande entre todas las inmediatas predecesoras. Ejemplo, la actividad i tiene dos actividades inmediatas predecesoras: h y g. Dado que EFh = 58 es mayor que EFg = 43 , EFh deberá emplearse para calcular EFi:

...

Descargar como (para miembros actualizados) txt (18 Kb) pdf (518 Kb) docx (99 Kb)
Leer 12 páginas más »
Disponible sólo en Clubensayos.com