Competencia en matlab
Enviado por Giess Adartse Lavodnas • 19 de Octubre de 2015 • Tarea • 389 Palabras (2 Páginas) • 167 Visitas
- Adquiriendo su competencia 1: Dadas las siguientes funciones, determine su derivada:
[pic 1] | [pic 2] | [pic 3] | [pic 4] | [pic 5] |
Y [pic 6]
>> syms x t y n Y=(x^4+5)^(1/3); dy=diff(Y)
dy =
(4*x^3)/(3*(x^4 + 5)^(2/3))
>> pretty(dy)
3 4 x ----------- 2 - 3 4 3 (x + 5) >> sdy=simplify(dy)
sdy =
(4*x^3)/(3*(x^4 + 5)^(2/3))
>> |
[pic 7]
>> syms x t y n >> Y=sqrt(9-x^2); >> dy=diff(Y)
dy =
-x/(9 - x^2)^(1/2)
>> pretty(dy)
x - ----------- 2 1/2 (9 - x ) >> sdy=simplify(dy)
sdy =
-x/(9 - x^2)^(1/2)
>> |
[pic 8]
>> syms x t y n Y=(x-1)*(1+1/x); dy=diff(Y)
dy =
1/x - (x - 1)/x^2 + 1
>> pretty(dy)
1 x - 1 - - ----- + 1 x 2 x >> sdy=simplify(dy)
sdy =
1/x^2 + 1 |
[pic 9]
>> syms x t y n >> Y=(5*x-2)/(x^2+1); >> dy=diff(Y)
dy =
5/(x^2 + 1) - (2*x*(5*x - 2))/(x^2 + 1)^2
>> pretty(dy)
5 2 x (5 x - 2) ------ - ------------- 2 2 2 x + 1 (x + 1) >> sdy=simplify(dy)
sdy =
(- 5*x^2 + 4*x + 5)/(x^2 + 1)^2 |
[pic 10]
>> syms x t y n >> Y=(exp(x))*(sin(x)+cos(x)); >> dy=diff(Y)
dy =
exp(x)*(cos(x) + sin(x)) + exp(x)*(cos(x) - sin(x))
>> pretty(dy)
exp(x) (cos(x) + sin(x)) + exp(x) (cos(x) - sin(x)) >> sdy=simplify(dy)
sdy =
2*exp(x)*cos(x)
|
...