ACTIVIDAD DE TIC
Enviado por zedd1210 • 22 de Enero de 2015 • 892 Palabras (4 Páginas) • 235 Visitas
Ecuacion de la circunferencia
La circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro (recordar que estamos hablando del Plano Cartesiano y es respecto a éste que trabajamos).
Determinación de una circunferencia
Una circunferencia queda determinada cuando conocemos:
Tres puntos de la misma, equidistantes del centro.
El centro y el radio.
El centro y un punto en ella.
El centro y una recta tangente a la circunferencia.
También podemos decir que la circunferencia es la línea formada por todos los puntos que están a la misma distancia de otro punto, llamado centro.
Esta propiedad es la clave para hallar la expresión analítica de una circunferencia (la ecuación de la circunferencia).
Entonces, entrando en el terreno de la Geometría Analítica, (dentro del Plano Cartesiano) diremos que ─para cualquier punto, P (x, y), de una circunferencia cuyo centro es el punto C (a, b) y con radio r─, la ecuación ordinaria es
(x ─ a)2 + (y ─ b)2 = r2
¿Qué significa esto?
En el contexto de la Geometría Analítica significa que una circunferencia graficada con un centro definido (coordenadas) en el plano Cartesiano y con radio conocido la podemos “ver” como gráfico y también la podemos “transformar” o expresar como una ecuación matemática.
Así la vemos Así podemos expresarla
Donde:
(d) Distancia CP = r
y
Fórmula que elevada al cuadrado nos da
(x ─ a)2 + (y ─ b)2 = r2
También se usa como
(x ─ h)2 + (y ─ k)2 = r2
Recordar siempre que en esta fórmula la x y la y serán las coordenadas de cualquier punto (P) sobre la circunferencia, equidistante del centro un radio (r). Y que la a y la b (o la h y la k, según se use) corresponderán a las coordenadas del centro de la circunferencia C(a, b).
Nota importante:
Los ejercicios sobre esta materia pueden hacerse en uno u otro sentido.
Es decir, si nos dan la ecuación de una circunferencia, a partir de ella podemos encontrar las coordenadas de su centro y el valor de su radio para graficarla o dibujarla.
Y si nos dan las coordenadas del centro de una circunferencia y el radio o datos para encontrarlo, podemos llegar a la ecuación de la misma circunferencia.
Cuadrado del binomio
Aquí haremos una pausa para recordar el cuadrado del binomio ya que es muy importante para lo que sigue:
El binomio al cuadrado de la forma (a ─ b)2 podemos desarrollarlo como (a ─ b) (a ─ b) o convertirlo en un trinomio de la forma a2 ─ 2ab + b2.
Sigamos nuestro razonamiento sobre la ecuación (x ─ a)2 + (y ─ b)2
...