Acero Estructural
Enviado por LUZCARLOS • 25 de Abril de 2013 • 2.414 Palabras (10 Páginas) • 550 Visitas
Concepto y características de acero estructural
El Acero estructural es es uno de los materiales básicos utilizados en la construcción de estructuras, tales como edificios industriales y comerciales, puentes y muelles. Se produce en una amplia gama de formas y grados, lo que permite una gran flexibilidad en su uso. Es relativamente barato de fabricar y es el material más fuerte y más versátil disponible para la industria de la construcción.
Características:
Su densidad media es de 7850 kg/m³.
En función de la temperatura el acero se puede contraer, dilatar o fundir.
El punto de fusión del acero depende del tipo de aleación y los porcentajes de elementos aleantes. El de su componente principal, el hierro es de alrededor de 1.510 °C en estado puro (sin alear), sin embargo el acero presenta frecuentemente temperaturas de fusión de alrededor de 1.375 °C, y en general la temperatura necesaria para la fusión aumenta a medida que se aumenta el porcentaje de carbono y de otros aleantes. (excepto las aleaciones eutécticas que funden de golpe). Por otra parte el acero rápido funde a 1.650 °C.
Su punto de ebullición es de alrededor de 3.000 °C.
Es un material muy tenaz, especialmente en alguna de las aleaciones usadas para fabricar herramientas.
Relativamente dúctil. Con él se obtienen hilos delgados llamados alambres.
Es maleable. Se pueden obtener láminas delgadas llamadas hojalata. La hojalata es una lámina de acero, de entre 0,5 y 0,12 mm de espesor, recubierta, generalmente de forma electrolítica, por estaño.
Permite una buena mecanización en máquinas herramientas antes de recibir un tratamiento térmico.
Algunas composiciones y formas del acero mantienen mayor memoria, y se deforman al sobrepasar su límite elástico.
La dureza de los aceros varía entre la del hierro y la que se puede lograr mediante su aleación u otros procedimientos térmicos o químicos entre los cuales quizá el más conocido sea el templado del acero, aplicable a aceros con alto contenido en carbono, que permite, cuando es superficial, conservar un núcleo tenaz en la pieza que evite fracturas frágiles. Aceros típicos con un alto grado de dureza superficial son los que se emplean en las herramientas de mecanizado, denominados aceros rápidos que contienen cantidades significativas de cromo, wolframio, molibdeno y vanadio. Los ensayos tecnológicos para medir la dureza son Brinell,Vickers y Rockwell, entre otros.
Se puede soldar con facilidad.
La corrosión es la mayor desventaja de los aceros ya que el hierro se oxida con suma facilidad incrementando su volumen y provocando grietas superficiales que posibilitan el progreso de la oxidación hasta que se consume la pieza por completo. Tradicionalmente los aceros se han venido protegiendo mediante tratamientos superficiales diversos. Si bien existen aleaciones con resistencia a la corrosión mejorada como los aceros de la construcción aptos para intemperie (en ciertos ambientes) o los aceros inoxidables.
Posee una alta conductividad eléctrica. Aunque depende de su composición es aproximadamente de17 3 • 106 S/m. En las líneas aéreas de alta tensión se utilizan con frecuencia conductores de aluminio con alma de acero proporcionando éste último la resistencia mecánica necesaria para incrementar los vanos entre la torres y optimizar el coste de la instalación.
Se utiliza para la fabricación de imanes permanentes artificiales, ya que una pieza de acero imantada no pierde su imantación si no se la calienta hasta cierta temperatura. La magnetización artificial se hace por contacto, inducción o mediante procedimientos eléctricos. En lo que respecta al acero inoxidable, al acero inoxidable ferrítico sí se le pega el imán, pero al acero inoxidable austenítico no se le pega el imán ya que la fase del hierro conocida como austenita no es atraída por los imanes. Los aceros inoxidables contienen principalmente níquel y cromo en porcentajes del orden del 10% además de algunos aleantes en menor proporción.
Un aumento de la temperatura en un elemento de acero provoca un aumento en la longitud del mismo. Este aumento en la longitud puede valorarse por la expresión: δL = α δ t° L, siendo a el coeficiente de dilatación, que para el acero vale aproximadamente 1,2 • 10−5 (es decir α = 0,000012). Si existe libertad de dilatación no se plantean grandes problemas subsidiarios, pero si esta dilatación está impedida en mayor o menor grado por el resto de los componentes de la estructura, aparecen esfuerzos complementarios que hay que tener en cuenta. El acero se dilata y se contrae según un coeficiente de dilatación similar al coeficiente de dilatación del hormigón, por lo que resulta muy útil su uso simultáneo en la construcción, formando un material compuesto que se denomina hormigón armado.18 El acero da una falsa sensación de seguridad al ser incombustible, pero sus propiedades mecánicas fundamentales se ven gravemente afectadas por las altas temperaturas que pueden alcanzar los perfiles en el transcurso de un incendio.
Elemento de unió estructural
Sin duda, la parte de uniones es la que tiene un tratamiento menos importante en la normativa española, tanto desde el punto de vista de cálculo como desde el de especificaciones de ejecución. Sin embargo, es en el diseño y cálculo de las uniones donde se muestra de forma más notoria la calidad del proyectista de estructuras metálicas.
En la actualidad se tiende a realizar las uniones mediante soldadura debido a su sencillez, estanqueidad y compacidad de las mismas, así como a la eliminación de elementos intermedios. Sin embargo, en algunas ocasiones no es posible obtener mediante soldadura de piezas aparatos de unión que reflejen de manera real las hipótesis de cálculo, por lo que es necesario recurrir a los tornillos, bulones u otros elementos más sofisticados, tales como los apoyos de neopreno o los constituidos por resortes, amortiguadores, etc.
El número de nudos posible en las estructuras metálicas es grande y resulta difícil
su clasificación.
En general, se podrían dividir las uniones de nudo en flexibles y rígidas, según
que desde el punto de vista de cálculo no puedan transmitir un momento apreciable o sí lo transmitan.
Tipos de conexiones entre vigas y columnas
Las conexiones entre las vigas y las columnas son una de las conexiones más frecuentes en las estructuras de acero y concebirlas y diseñarlas correctamente corresponde no sólo a una decisión de cálculo estructural sino de manera muy significativa, a una decisión del proyecto y la construcción. La conexión entre vigas y columnas se puede resaltar expresivamente en el edificio, dependiendo de su visibilidad.
Las
...