Análisis Estructural
Enviado por johanenlavigne • 27 de Mayo de 2015 • 276 Palabras (2 Páginas) • 157 Visitas
IMPORTANTE:
Estrategias citadas en el Review de estrategias de control de prótesis y órtesis.
[27] √ Sup F, Bohara A, Goldfarb M. Design and control of a powered transfemoral prosthesis. International Journal of Robotics Research 2008;27(2):263–73.
[39] Au S, Bonato P, Herr H. An EMG-position controlled system for an active ankle–foot prosthesis: an initial experimental study. In: Proceedings of the 2005 IEEE Conference on Rehabilitation Robotics. 2005. p. 375–9. (SUSTITUIR CON
S. Au, M. Berniker, and H. Herr, “Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.,” Neural Netw., vol. 21, no. 4, pp. 654–66, May 2008.
[40] √ Varol HA, Goldfarb M. Real-time intent recognition for a powered knee and ankle transfemoral prosthesis. In: Proceedings of the 2007 IEEE 10th Interna- tional Conference on Rehabilitation Robotics. 2007. p. 16–23.
[41] √ Varol HA, Sup F, Goldfarb G. Real-time gait mode intent recognition of a pow- ered knee and ankle prosthesis for standing and walking. In: Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. 2008. p. 66–72.
[42] √ Varol HA, Sup F, Goldfarb M. Powered sit-to-stand and assistive stand-to-sit framework for a powered transfemoral prosthesis. In: Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics. 2009. p. 645–51.
[43] √ Varol HA, Sup F, Goldfarb M. Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Transactions on Biomedical Engineering 2010;57(3):542–51.
[44] Au S, Berniker M, Herr H. Powered ankle–foot prosthesis to assist level-ground and stair descent gaits. Neural Networks 2008;21(4):654–66.
[9] √ Varol HA, Goldfarb M. Decomposition-based control for a powered knee and ankle transfemoral prosthesis. In: Proceedings of the 2007 IEEE 10th Interna- tional Conference on Rehabilitation Robotics. 2007. p. 783–9.
...