ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Conversor


Enviado por   •  19 de Julio de 2012  •  673 Palabras (3 Páginas)  •  544 Visitas

Página 1 de 3

2. Conversión entre números decimales y binarios

Convertir un número decimal al sistema binario es muy sencillo: basta con realizar divisiones sucesivas por 2 y escribir los restos obtenidos en cada división en orden inverso al que han sido obtenidos.

Por ejemplo, para convertir al sistema binario el número 7710 haremos una serie de divisiones que arrojarán los restos siguientes:

77 : 2 = 38 Resto: 1

38 : 2 = 19 Resto: 0

19 : 2 = 9 Resto: 1

9 : 2 = 4 Resto: 1

4 : 2 = 2 Resto: 0

2 : 2 = 1 Resto: 0

1 : 2 = 0 Resto: 1

y, tomando los restos en orden inverso obtenemos la cifra binaria:

7710 = 10011012

3. Conversión de binario a decimal

El proceso para convertir un número del sistema binario al decimal es aún más sencillo; basta con desarrollar el número, teniendo en cuenta el valor de cada dígito en su posición, que es el de una potencia de 2, cuyo exponente es 0 en el bit situado más a la derecha, y se incrementa en una unidad según vamos avanzando posiciones hacia la izquierda.

Por ejemplo, para convertir el número binario 10100112 a decimal, lo desarrollamos teniendo en cuenta el valor de cada bit:

1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 83

10100112 = 8310

4. Conversión de un número decimal a octal

La conversión de un número decimal a octal se hace con la misma técnica que ya hemos utilizado en la conversión a binario, mediante divisiones sucesivas por 8 y colocando los restos obtenidos en orden inverso. Por ejemplo, para escribir en octal el número decimal 12210 tendremos que hacer las siguientes divisiones:

122 : 8 = 15 Resto: 2

15 : 8 = 1 Resto: 7

1 : 8 = 0 Resto: 1

Tomando los restos obtenidos en orden inverso tendremos la cifra octal:

12210 = 1728

5. Conversión octal a decimal

La conversión de un número octal a decimal es igualmente sencilla, conociendo el peso de cada posición en una cifra octal. Por ejemplo, para convertir el número 2378 a decimal basta con desarrollar el valor de cada dígito:

2*82 + 3*81 + 7*80 = 128 + 24 + 7 = 15910

2378 = 159

6. Conversión de números binarios a octales y viceversa

Observa la tabla siguiente, con los siete primeros números expresados en los sistemas decimal, binario y octal:

DECIMAL BINARIO OCTAL

0 000 0

1 001 1

2 010 2

3 011 3

4 100 4

5 101 5

6 110 6

7 111 7

Cada dígito de un número octal se representa con tres dígitos en el sistema binario. Por tanto, el modo de conver¬tir un número entre estos sistemas de numeración equivale a "expandir" cada dígito octal a tres dígitos bi¬narios, o en "contraer" grupos de tres caracteres

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com