Que Es Big Data
Enviado por Macros23 • 8 de Agosto de 2014 • 972 Palabras (4 Páginas) • 644 Visitas
¿Qué es Big Data?
Big Data (del idioma inglés grandes datos) es en el sector de tecnologías de la información y la comunicación una referencia a los sistemas que manipulan grandes conjuntos de datos (o data sets). Las dificultades más habituales en estos casos se centran en la captura, el almacenamiento, búsqueda, compartición, análisis, y visualización. La tendencia a manipular ingentes cantidades de datos se debe a la necesidad en muchos casos de incluir los datos relacionados del análisis en un gran conjunto de datos relacionado, tal es el ejemplo de los análisis de negocio, los datos de enfermedades infecciosas, o la lucha contra el crimen organizado.
¿Qué es Big Data y porqué se ha vuelto tan importante? pues bien, en términos generales podríamos referirnos como a la tendencia en el avance de la tecnología que ha abierto las puertas hacia un nuevo enfoque de entendimiento y toma de decisiones, la cual es utilizada para describir enormes cantidades de datos (estructurados, no estructurados y semi estructurados) que tomaría demasiado tiempo y sería muy costoso cargarlos a un base de datos relacional para su análisis. De tal manera que, el concepto de Big Data aplica para toda aquella información que no puede ser procesada o analizada utilizando procesos o herramientas tradicionales. Sin embargo, Big Data no se refiere a alguna cantidad en específico, ya que es usualmente utilizado cuando se habla en términos de petabytes y exabytes de datos. Entonces ¿Cuánto es demasiada información de manera que sea elegible para ser procesada y analizada utilizando Big Data? Analicemos primeramente en términos de bytes:
Gigabyte = 109 = 1,000,000,000
Terabyte = 1012 = 1,000,000,000,000
Petabyte = 1015 = 1,000,000,000,000,000
Exabyte = 1018 = 1,000,000,000,000,000,000
Tipos de datos de Big Data
1.- Web and Social Media: Incluye contenido web e información que es obtenida de las redes sociales como Facebook, Twitter, LinkedIn, etc, blogs.
2.- Machine-to-Machine (M2M): M2M se refiere a las tecnologías que permiten conectarse a otros dispositivos. M2M utiliza dispositivos como sensores o medidores que capturan algún evento en particular (velocidad, temperatura, presión, variables meteorológicas, variables químicas como la salinidad, etc.) los cuales transmiten a través de redes alámbricas, inalámbricas o híbridas a otras aplicaciones que traducen estos eventos en información significativa.
3.- Big Transaction Data: Incluye registros de facturación, en telecomunicaciones registros detallados de las llamadas (CDR), etc. Estos datos transaccionales están disponibles en formatos tanto semiestructurados como no estructurados.
4.- Biometrics: Información biométrica en la que se incluye huellas digitales, escaneo de la retina, reconocimiento facial, genética, etc. En el área de seguridad e inteligencia, los datos biométricos han sido información importante para las agencias de investigación.
5.- Human Generated: Las personas generamos diversas cantidades de datos como la información que guarda un call center al establecer una llamada telefónica, notas de voz, correos electrónicos, documentos electrónicos, estudios médicos, etc.
Componentes de una plataforma Big Data
Hadoop está inspirado en el proyecto de Google File System(GFS) y en el paradigma de programación MapReduce, el cual consiste
...