Teorioa Del Juego
Enviado por carlosperaza0203 • 14 de Abril de 2015 • 1.471 Palabras (6 Páginas) • 221 Visitas
Teoría del juego
¿Qué es un juego?
Un juego es una situación conflictiva en la que uno debe tomar una decisión sabiendo que los demás también toman decisiones, y que el resultado del conflicto se determina, de algún modo, a partir de todas las decisiones realizadas. John von Neumann.
Historia de la teoría de Juego
La primera discusión conocida de la teoría de juegos aparece en una carta escrita por James Waldegrave en 1713. En esta carta, Waldegrave proporciona una solución mínima de estrategia mixta a una versión para dos personas del juego de cartas le Her. Sin embargo no se publicó un análisis teórico de teoría de juegos en general hasta la publicación de Recherches sur les príncipes mathématiques de la théorie des richesses, de Antoine Augustin Cournot en 1838. En este trabajo, Cournot considera un duopolio y presenta una solución que es una versión restringida del equilibrio de Nash.
Aunque el análisis de Cournot es más general que el de Waldegrave, la teoría de juegos realmente no existió como campo de estudio aparte hasta que John von Neumann publicó una serie de artículos en 1928. Estos resultados fueron ampliados más tarde en su libro de 1944, Theory of Games and Economic Behavior8, escrito junto con Oskar Morgenstern.
Este trabajo contiene un método para encontrar soluciones óptimas para juegos de suma cero de dos personas. Durante este período, el trabajo sobre teoría de juegos se centró, sobre todo, en teoría de juegos cooperativos. Este tipo de teoría de juegos analiza las estrategias óptimas para grupos de individuos, asumiendo que pueden establecer acuerdos entre sí acerca de las estrategias más apropiadas.
La Teoría de Juegos estudia de manera formal y abstracta las decisiones óptimas que deben tomar diversos adversarios en conflicto, pudiendo definirse como el estudio de modelos matemáticos que describen el conflicto y la cooperación entre entes inteligentes que toman decisiones. Tales decisiones se consideran estratégicas, es decir, que los entes que participan en el juego actúan teniendo en cuanta las acciones que tomarían los demás.
La teoría de juegos es capaz de ofrecer cuestiones de interés para estudiantes de todas las ramas de las Ciencias Sociales y la Biología, así como técnicas para tomar decisiones prácticas.
Aunque la palabra “juego” tiene connotaciones lúdicas y relativas al azar, la teoría de juegos no tiene como principal objetivo el estudio de los juegos de salón, aunque sí entran dentro de su dominio. Una terminología alternativa que ilustra más claramente el objeto de la Teoría de Juegos es el “análisis matemático de conflictos” y la “toma interactiva de decisiones”.
Como ejemplos característicos de juegos podrían citarse no sólo los juegos de mesa, sino también conflictos militares, modelos de evolución biológica, campañas políticas, de publicidad o de comercialización y una innumerable lista de situaciones de competencia entre empresas.
Los juegos estudiados por la teoría de juegos están bien definidos por objetos matemáticos.
Un juego consiste en un conjunto de jugadores, un conjunto de movimientos (o estrategias) disponible para esos jugadores y una especificación de recompensas para cada combinación de estrategias. Hay dos formas comunes de representar a los juegos.
• Forma normal de un juego
La forma normal (o forma estratégica) de un juego es una matriz de pagos, que muestra los jugadores, las estrategias, y las recompensas. Hay dos tipos de jugadores; uno elige la fila y otro la columna. Cada jugador tiene dos estrategias, que están especificadas por el número de filas y el número de columnas. Las recompensas se especifican en el interior. El primer número es la recompensa recibida por el jugador de las filas (el Jugador 1 en nuestro ejemplo); el segundo es la recompensa del jugador de las columnas (el Jugador 2 en nuestro ejemplo). Si el jugador 1 elige arriba y el jugador 2 elige izquierda entonces sus recompensas son 4 y 3, respectivamente.
Cuando un juego se presenta en forma normal, se presupone que todos los jugadores actúan simultáneamente o, al menos, sin saber la elección que toma el otro. Si los jugadores tienen alguna información acerca de las elecciones de otros jugadores el juego se presenta habitualmente en la forma extensiva.
• Forma extensiva de un juego
La representación de juegos en forma extensiva modela juegos con algún orden que se debe considerar. Los juegos se presentan como árboles.
Cada vértice o nodo representa un punto donde el jugador toma decisiones. El jugador se especifica por un número situado junto al vértice. Las líneas que parten del vértice representan acciones
...