Actividad integradora: integración de lo aprendido
Enviado por AngelAsh478 • 23 de Abril de 2016 • Tarea • 3.856 Palabras (16 Páginas) • 391 Visitas
[pic 1] [pic 2]
Universidad Autónoma de Nuevo León
Escuela y Preparatoria Técnica Médica
Matemáticas 2
Etapa 2: la geometría plana
Actividad integradora: integración de lo aprendido
Grupo: 209
Maestro: Marco Tulio Triana
Nombre: Matricula:
Angel Gabriel Segoviano Huitron 1805534
Olga Jazmín Soto Castellanos 1809204
Jorge Daniel Guerrero Gonzales 1801328
Fecha de entrega; 18 de abril del 2016, a Monterrey N.L
Introducción.
La geometría es aquella ciencia-matemáticas que se encarga de estudiar la extensión, la forma de medirla, las relaciones entre puntos, líneas, ángulos, planos y figuras, y la manera cómo se miden.
en esta etapa se vio obviamente la aplicación de la geometría en varios problemas jerárquicos en las cuales se tenía que tratar de buscar un valor o una incógnita que tenían estas figuras geométricas o formas, para tener datos completos de ella y ser útil o archivado para algún planteamiento futuro de estas mismas…
En fin, para continuar con las labores de este mismo trabajo, reuniremos todo lo aprendido recopilando y rehaciendo problemas y redactando su solución para demostrar nuestro aprendizaje y a la vez compartir información útil para futuros laborantes de esta materia.
Sin más que agregar comenzamos. [pic 3]
- Aplicación de las propiedades de 2 rectas paralelas cortadas con una transversal.
Imagen de ejemplo.[pic 4][pic 5][pic 6][pic 7][pic 8][pic 9][pic 10][pic 11][pic 12][pic 13][pic 14]
Las propiedades que tienen estas mismas son las siguiente:
Ángulos entre rectas cortadas por una transversal.
Donde, los que están éntrelas rectas paralelas son llamados ángulos internos y los que están fuera de esta misma son los ángulos externos.[pic 15]
Ángulos correspondientes
Son dos ángulos, uno interno y uno externo, que se encuentran del mismo lado de la transversal y con vértices en dos paralelas distintas.
Ahora se pueden detectar ciertas características especiales de acuerdo a la imagen, principalmente entre los ángulos.
Ángulos correspondientes
Son los ángulos que tienen el mismo valor y están en la misma posición, o cercana… usando la imagen anterior, el ∟1 y ∟5, el ∟2 y ∟6, el ∟3 y ∟7, y el ∟4 y ∟8, entre si son ángulos correspondientes.
Ángulos alternos (internos y externos).
Son los ángulos que están alternos entre sí de posición, pero están en el lado externo o interno dependiendo de su posición. En eso se puede observar que los alternos externos son: el ∟1 y ∟8, y el ∟2 y ∟7. En los internos son: el ∟3 y ∟6, y el ∟4 y ∟5. Todos los pares de ángulos marcados anteriormente son de la misma medida
Problema del tema:
- En la siguiente figura el ángulo [pic 16] mide 69°. ¿Cuál es la medida de los demás ángulos?
Respuesta= Tomando en cuenta lo aprendido, ya tenemos un valor de un ángulo e identificando los ángulos de la misma medida, tenemos:[pic 17]
∟3, ∟6 y ∟8= 69°
El valor faltante se obtiene restando 180- 69, porque son ángulos complementarios, y nos da 111°, y realizando lo anterior:
los ∟1, ∟4, ∟5 y ∟7, son de esta medida.
- Aplicación de las propiedades de los triángulos.
Los triángulos son figuras son polígonos compuesto de 3 lados a partir de la unión de 3 rectas y estas tienen ciertas propiedades de las cuales vamos a identificas.
- La altura de un triángulo es la recta que pasa por un vértice y es perpendicular al lado opuesto.
La siguiente imagen muestra las alturas de un triángulo.
El punto donde se reúnen todas las alturas o se interconectan se le llama ortocentro,
[pic 18]
Al segmento de recta perpendicular al lado del triángulo que pasa por su punto medio, se le llama mediatriz. [pic 19]
Al punto donde se cortan todas las mediatrices se le llama circuncentro. En la figura se muestra las mediatrices (color azul) y el circuncentro del triángulo.
La mediana es el segmento de recta que une el punto medio de un lado con el vértice del lado opuesto. El punto donde se intersectan las tres medianas del triángulo se le llama baricentro.
La bisectriz es el segmento de recta que corta el ángulo de cada vértice en dos ángulos de igual magnitud. Al punto donde se cortan las bisectrices se le llama incentro.
[pic 20][pic 21]
Añadiendo las propiedades según las rectas, también tenemos propiedades según a su medida de ángulo o de lados.[pic 22]
Triángulo equilátero.
Es aquel que tiene todos sus lados de la misma medida.[pic 23]
Triángulo isósceles.
Es el que tiene dos lados de la misma medida.
[pic 24]
Triángulo escaleno
Es el que tiene todos los lados de diferente medida.[pic 25]
Triángulo acutángulo
Es aquel que tiene todos sus ángulos agudos.
[pic 26]
Triángulo rectángulo
Es aquel que tiene un ángulo de [pic 27].
Triángulo obtusángulo[pic 28]
...