Agujeros Negros
Enviado por elmagonegro • 18 de Mayo de 2013 • 3.088 Palabras (13 Páginas) • 341 Visitas
Agujeros Negros
La gravedad es la partera y el enterrador de las estrellas. Reúne puñados de gas y polvo de las nubes interestelares, los comprime y, si son suficientemente masivos, enciende las reacciones termonucleares en su interior. Luego, durante millones o miles de millones de años, se producen energía, calor y presión que puede balancear la atracción de la gravedad. La estrella permanece estable, como nuestro Sol. Sin embargo, cuando las fuentes de energía de la estrella finalmente se agotan, la gravedad hace que se contraiga sin que nada se lo impida. Las estrellas como nuestro Sol se contraen para convertirse en enanas blancas --- un millón de veces más densas que el agua, soportadas por fuerzas cuánticas entre los electrones. Si la masa de la estrella que colapsa es de més de 1.44 masas solares, la gravedad domina a las fuerzas cuánticas, y la estrella sigue colapsando para convertirse en una estrella de neutrones, millones de veces más densa que una enana blanca, y soportada por fuerzas cuánticas entre neutrones. La energía liberada en este colapso expulsa las capas exteriores de la estrella, produciendo una supernova. Si la masa de la estrella que colapsa es de más de tres masas solares, sin embargo, ninguna fuerza puede impedir que colapse completamente para convertirse en un agujero negro.
¿Qué es un agujero negro?
Mini agujeros negros
¿Cómo puede usted "ver" un agujero negro?
Agujeros negros supermasivos
Agujeros negros y ciencia-ficción
Actividad #1: Contracción
Actividad #2: Un Modelo a Escala de un Agujero Negro
Mitos sobre agujeros negros
Lecturas Adicionales sobre Agujeros Negros
¿Qué es un agujero negro?
Un agujero negro es una región del espacio en la que la atracción de la gravedad es tan fuerte que nada puede escapar. Es un "agujero" en el sentido de que las cosas pueden caer, pero no salir de él. Es "negro" en el sentido de que ni siquiera la luz puede escapar. Otra forma de decirlo es que un agujero negro es un objeto para el que la velocidad de escape (la velocidad requerida para desligarse de él) es mayor que la velocidad de la luz -- el último "límite de velocidad" en el universo.
En 1783 un astrónomo aficionado británico, el Rev. John Mitchell, se dio cuenta de que las leyes de gravitación y movimiento de Newton implicaban que mientras más masivo es un cuerpo, mayor es la velocidad de escape. Si usted pudiera de alguna manera hacer algo unas 500 veces mayor que el Sol, pero con la misma densidad, razonó, ni siquiera la luz podría moverse lo suficientemente rápido para escapar y ese "algo" nunca sería visto. Pero los astrónomos y físicos necesitaron la teoría de la relatividad general de Einstein, que es la teoría moderna de la gravedad, para entender la verdadera naturaleza y las características de los agujeros negros.
La frontera de un agujero negro se llama horizonte de eventos, porque cualquier evento que suceda en su interior está oculto para siempre para alguien que mira desde fuera. El astrónomo Karl Schwarzchild demostró que el radio del horizonte de eventos en kilómetros es 3 veces la masa expresada en masas solares; a éste radio se le llama radio de Schwarschild. El horizonte de eventos es un filtro unidireccional en el agujero negro: cualquier cosa puede entrar, pero nada puede salir.
Un agujero negro es un objeto muy simple: tiene sólo tres propiedades, masa, espín y carga eléctrica. Debido a la manera en la que los agujeros negros se forman, su carga eléctrica es probablemente cero, lo que los hace aún más simples. La forma de la materia en un agujero negro no se conoce, en parte porque está oculta para el universo externo, y en parte porque, en teoría, la materia continuaría colapsando hasta tener radio cero, un punto al que los matemáticos llaman una singularidad, de densidad infinita ---algo con lo que no tenemos experiencia aquí en la Tierra.
En teoría, los agujeros negros vienen en tres tamaños: pequeños ("mini"), medianos y grandes ("supermasivos"). Hay buena evidencia de que los agujeros negros de tamaño mediano se forman como despojos de estrellas masivas que colapsan al final de sus vidas, y de que existen agujeros negros supermasivos en los núcleos de muchas galaxias --- quizá incluyendo la nuestra.
Mini Agujeros Negros
Un agujero negro con masa menor de tres masas solares no se formaría solo; su gravedad es demasiado débil para causar el colapso sobre sí mismo. Una enorme presión externa se necesitaría para crear un "mini-agujero negro." En 1971, el astrofísico Stephen Hawking teorizó que, en la densa turbulencia de la gran explosión de la que surgió el universo, esas enormes presiones externas existieron y formaron muchos mini-agujeros negros. Estos serían tan masivos como una montaña, pero tan pequeños como los protones de los que los átomos estan hechos. Y tendrían otra propiedad extraña: como resultado de las leyes de la mecánica cuántica que gobiernan las partículas muy pequeñas en el universo, radiarían energía espontáneamente y, después de miles de millones de años, eventualmente se evaporarían en una violenta explosión final. Por tanto, los mini-agujeros negros pueden no ser "negros" del todo --- una posibilidad intrigante. No existe evidencia observacional de mini-agujeros negros pero, en principio, tales objetos podrían estar dispersos por el universo, quizá aún cerca de nuestro sistema solar.
¿Cómo puede usted "ver" un agujero negro?
Usted podría preguntarse cómo se puede encontrar un agujero negro si nada, incluyendo la luz, puede escapar de él. Los agujeros negros tienen masa, que produce una fuerza gravitacional que afecta a los objetos cercanos. Esta fuerza gravitacional sería muy intensa cerca del agujero negro, y podría tener efectos notables en su ambiente. El material que cae hacia el hoyo negro ganaría energía del campo gravitacional, y sería aplastado y calentado al tratar de colarse en la pequeña garganta del agujero negro, por lo que produciría rayos-X. El primer ejemplo de un agujero negro fue descubierto precisamente por ese efecto gravitacional en una estrella acompañante.
Cygnus X-1 es el nombre que se le dio a una fuente de rayos X en la constelación Cygnus, descubierta en 1962 con un primitivo telescopio de rayos X que se envió a bordo de un cohete. Para 1971, la localización de la fuente de rayos X en el cielo se había medido con mayor precisión, usando observaciones de cohete y satélite. Un avance fundamental
...