ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Análisis De Varianza


Enviado por   •  22 de Noviembre de 2011  •  1.913 Palabras (8 Páginas)  •  790 Visitas

Página 1 de 8

El análisis de la varianza (o Anova: Analysis of variance) es un método para comparar dos o más medias, que es necesario porque cuando se quiere comparar más de dos medias es incorrecto utilizar repetidamente el contraste basado en la t de Student. por dos motivos:

En primer lugar, y como se realizarían simultánea e independientemente varios contrastes de hipótesis, la probabilidad de encontrar alguno significativo por azar aumentaría. En cada contraste se rechaza la H0 si la t supera el nivel crítico, para lo que, en la hipótesis nula, hay una probabilidad . Si se realizan m contrastes independientes, la probabilidad de que, en la hipótesis nula, ningún estadístico supere el valor crítico es (1 - )m, por lo tanto, la probabilidad de que alguno lo supere es 1 - (1 - )m, que para valores de  próximos a 0 es aproximadamente igual a m. Una primera solución, denominada método de Bonferroni, consiste en bajar el valor de , usando en su lugar /m, aunque resulta un método muy conservador.

Por otro lado, en cada comparación la hipótesis nula es que las dos muestras provienen de la misma población, por lo tanto, cuando se hayan realizado todas las comparaciones, la hipótesis nula es que todas las muestras provienen de la misma población y, sin embargo, para cada comparación, la estimación de la varianza necesaria para el contraste es distinta, pues se ha hecho en base a muestras distintas.

El método que resuelve ambos problemas es el anova, aunque es algo más que esto: es un método que permite comparar varias medias en diversas situaciones; muy ligado, por tanto, al diseño de experimentos y, de alguna manera, es la base del análisis multivariante.

2. Bases del análisis de la varianza

Supónganse k muestras aleatorias independientes, de tamaño n, extraídas de una única población normal. A partir de ellas existen dos maneras independientes de estimar la varianza de la población 2:

1) Una llamada varianza dentro de los grupos (ya que sólo contribuye a ella la varianza dentro de las muestras), o varianza de error, o cuadrados medios del error, y habitualmente representada por MSE (Mean Square Error) o MSW (Mean Square Within) que se calcula como la media de las k varianzas muestrales (cada varianza muestral es un estimador centrado de2 y la media de k estimadores centrados es también un estimador centrado y más eficiente que todos ellos). MSE es un cociente: al numerador se le llama suma de cuadrados del error y se representa por SSE y al denominador grados de libertad por ser los términos independientes de la suma de cuadrados.

2) Otra llamada varianza entre grupos (sólo contribuye a ella la varianza entre las distintas muestras), o varianza de los tratamientos, o cuadrados medios de los tratamientos y representada por MSA o MSB (Mean Square Between). Se calcula a partir de la varianza de las medias muestrales y es también un cociente; al numerador se le llama suma de cuadrados de los tratamientos (se le representa por SSA) y al denominador (k-1) grados de libertad.

MSA y MSE, estiman la varianza poblacional en la hipótesis de que las k muestras provengan de la misma población. La distribución muestral del cociente de dos estimaciones independientes de la varianza de una población normal es una F con los grados de libertad correspondientes al numerador y denominador respectivamente, por lo tanto se puede contrastar dicha hipótesis usando esa distribución.

Si en base a este contraste se rechaza la hipótesis de que MSE y MSA estimen la misma varianza, se puede rechazar la hipótesis de que las k medias provengan de una misma población.

Aceptando que las muestras provengan de poblaciones con la misma varianza, este rechazo implica que las medias poblacionales son distintas, de modo que con un único contraste se contrasta la igualdad de k medias.

Existe una tercera manera de estimar la varianza de la población, aunque no es independiente de las anteriores. Si se consideran las kn observaciones como una única muestra, su varianza muestral también es un estimador centrado de s 2:

Se suele representar por MST, se le denomina varianza total o cuadrados medios totales, es también un cociente y al numerador se le llama suma de cuadrados total y se representa por SST, y el denominador (kn -1) grados de libertad.

Los resultados de un anova se suelen representar en una tabla como la siguiente:

Fuente de variación G.L. SS MS F

Entre grupos

Tratamientos k-1 SSA SSA/(k-1) MSA/MSE

Dentro

Error (n-1)k SSE SSE/k(n-1)

Total kn-1 SST

Y el cociente F se usa para realizar el contraste de la hipótesis de medias iguales. La región crítica para dicho contraste es F > F(k-1,(n-1)k)

Algunas propiedades

Es fácil ver en la tabla anterior que

GLerror+ GLtrata = (n - 1) k + k - 1 = nk - k + k - 1 = nk - 1 = GLtotal

No es tan inmediato, pero las sumas de cuadrados cumplen la misma propiedad, llamada identidad o propiedad aditiva de la suma de cuadrados:

SST = SSA + SSE

El análisis de la varianza se puede realizar con tamaños muéstrales iguales o distintos, sin embargo es recomendable iguales tamaños por dos motivos:

La F es insensible a pequeñas variaciones en la asunción de igual varianza, si el tamaño es igual.

Igual tamaño minimiza la probabilidad de error tipo II.

3.Modelos de análisis de la varianza

El anova permite distinguir dos modelos para la hipótesis alternativa:

Modelo I o de efectos fijos en el que la H1 supone que las k muestras son muestras de k poblaciones distintas y fijas.

Modelo II o de efectos aleatorios en el que se supone que las k muestras, se han seleccionado aleatoriamente de un conjunto de m>k poblaciones.

Un ejemplo de modelo I de anova es que se asume que existen cinco poblaciones (sin tratamiento, con poca sal, sin sal, etc.) fijas, de las que se han extraído las muestras.

Un

...

Descargar como (para miembros actualizados) txt (12 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com