Concepto matemático
Enviado por dayana11 • 19 de Septiembre de 2011 • Documentos de Investigación • 724 Palabras (3 Páginas) • 720 Visitas
Este artículo trata del concepto matemático. Para el concepto lingüístico véase Número gramatical.
Para otros usos de este término, véase Número (desambiguación).
Un número es una entidad abstracta que representa una cantidad (de una magnitud). El símbolo de un número recibe el nombre de numeral o cifra. Los números se usan en la vida diaria como etiquetas (números de teléfono, numeración de carreteras), como indicadores de orden (números de serie), como códigos (ISBN), etc. En matemática, la definición de número se extiende para incluir abstracciones tales como números fraccionarios, negativos, irracionales, trascendentales y complejos.
Tipos de números
Los números más conocidos son los números naturales, que se usan para contar. Éstos, conjuntamente con los números negativos, conforman el conjunto de los enteros. Cocientes de enteros generan los números racionales. Si se incluyen todos los números que pueden expresarse con decimales pero no con fracciones de enteros (irracionales), se habla entonces de los números reales; si a éstos se les añade los números complejos, se obtendrán todos los números necesarios para resolver cualquier ecuación algebraica. Pueden añadirse también los infinitos, los hiperreales y los transfinitos. Entre los reales, existen números que no son soluciones de una ecuación polinomial o algebraica, que reciben el nombre de transcendentales. Ejemplos famosos de estos números son el número π (Pi) y el número e (este último base de los logaritmos naturales), los cuales están relacionados entre sí por la identidad de Euler.
Existe toda una teoría de los números, que clasifica a los números en:
Números naturales
Número primo
Números compuestos
Números perfectos
Números enteros
Números pares
Números impares
Números racionales
Números reales
Números irracionales
Números algebraicos
Números trascendentes: π y e
Números hiperreales
Números complejos
Cuaterniones
Números infinitos
Números transfinitos
Números negativos
Números
Complejos
Reales
Racionales
Enteros
Naturales
Uno
Primos
Compuestos
Cero
Negativos
Fraccionarios
Fracción propia
Fracción impropia
Irracionales
Algebraicos irracionales
Trascendentes
Imaginarios
El estudio de ciertas propiedades que cumplen los números ha producido una enorme cantidad de tipos de números, la mayoría sin un interés matemático específico. A continuación se indican algunos:
Narcisista: Número de n dígitos que resulta ser igual a la suma de las potencias de orden n de sus dígitos. Ejemplo: 153 =
...