Conceptos Matemáticos: Poligonos
Enviado por Sophie_Cobian • 19 de Marzo de 2013 • 342 Palabras (2 Páginas) • 1.012 Visitas
Un polígono es toda proporción del espacio limitada por segmentos de recta. Estos segmento se llaman lados del polígono.
a) Un polígono regular es aquel que tiene sus lados iguales y sus ángulos interiores iguales.
b) Además los polígonos se clasifican en polígonos convexos y en cóncavos.
c) Un polígono es convexo cuando el segmento de recta que una a cualesquiera dos de sus puntos se encuentra totalmente en su interior. En caso contrario se dice que el polígono es cóncavo.
d) Además, un polígono es convexo cuando todos sus ángulos interiores sean menores de 180; en caso contrario, es cóncavo.
Ángulos interiores: Son ángulos formados por cada dos lados consecutivos.
Ángulos externos: Son los ángulos adyacentes en los ángulos interiores, que se obtienen al prolongar los lados de estos: Es decir, se forman por un lado y la prolongación de otro.
Diagonal: Es todo segmento de recta que une un vértice con otro que no es consecutivo con él.
Radio: Es el radio de la circunferencia circunscrita en un polígono regular, y se obtiene mediante el segmento de recta que une al centro de esta última con uno de los vértices del polígono.
Apotema: El segmento de recta perpendicular a cualquiera de los lados de un polígono regular. Trazada desde el centro de la circunferencia inscrita en el mismo.
Ángulo central: Es el ángulo que forman los radios que pasan por dos vértices consecutivos, en un polígono regular.
La suma de los ángulos interiores de un polígono convexo de “n” lados es igual a (n-2)180
La suma de los ángulos exteriores de un polígono conexo es iguala 360 grados, independientemente del número de lados del polígono.
El número de diagonales que se pueden trazar en un polígono convexo de “n” lados es igual a:
d=(n(n-3))/2
Sai: Suma de triángulos en el interior de un polígono.
Ai: Ángulo interior.
Ae: Ángulo exterior.
Sae: Suma de ángulos exteriores.
D: Diagonal.
N: Número de lados.
...