ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Consolidacion_TC1


Enviado por   •  1 de Abril de 2014  •  1.067 Palabras (5 Páginas)  •  205 Visitas

Página 1 de 5

TRABAJO COLABORATIVO 1

MÉTODOS NUMÉRICOS

100401

INTRODUCCIÓN

En la información contenida en este trabajo se evidencia el desarrollo de la Unidad 1 del curso de métodos números, el cual por medio de dos capítulos se estudiaron los conceptos básicos y las raíces de ecuaciones.

Por medio de aportes individuales y concesión por parte de todos los integrantes del grupo, se llega a un acuerdo sobre cual mapa conceptual cumple con los requisitos especificados en la guía de la actividad y los ejercicios que su solución esta de manera correcta.

Dichos ejercicios muestran los conocimientos adquiridos por parte de los integrantes del grupo de trabajo al estudiar de manera intensiva los temas de la unidad, permitiendo así desarrollar ejercicios de error relativo y absoluto, errores de redondeo y truncamiento y la búsqueda de raíces por medio de métodos iterativos.

OBJETIVOS

Comprender de manera apropiada los diferentes conceptos de cada capítulo de la unidad 1 del curso.

Evaluar e implementar de manera apropiada los procesos de aplicación de los diversos casos de errores y raíces de ecuaciones.

Desarrollar los ejercicios propuestos de manera oportuna y significativa utilizando los métodos y herramientas que nos brinda el modulo.

Interactuar de manera permanente con los integrantes del grupo de trabajo que nos permitan el desarrollo de competencias comunicativas.

MAPA CONCEPTUAL

DESARROLLO DE EJERCICIOS

Considere los valores de P y P* y calcule i) el error relativo y ii) el error absoluto

p = 0.757 p*= 0.784

i) error relativo

error relativo=|p-p*|/|p| =|0.757- 0.784|/|0.757| =0.27/0.757=0.03567

ii) error absoluto

error absoluto=|p-p*|=|0.757- 0.784|=0.027

Determine las raíces reales de f(x)=0.5x^2+0.3x-1.2

Usando la formula cuadrática

f(x)=0.5x^2+0.3x-1.2

x=(-b±√(b^2-4ac))/2a

x=(-0.3±√(〖(0.3)〗^2-4(0.5)(-1.2)))/(2(0.5))

x=(-0.3±√(0.09+2.4))/1

x=(-0.3±√(2.4) 9)/1

x=-0.3±1.5779

x_1=1.2779

x_2=-1.8779

Usando el método de bisección hasta tres iteraciones para determinar la raíz mas grande. Emplee como valores iniciales x=0 y x=2

Método de la bisección

f(x)=0.5x^2+0.3x-1.2 x=0, x=2

Se halla f(0) y f(2)

f(0)=0.5(0)^2+0.3(0)-1.2=-1.2<0

f(2)=0.5(2)^2+0.3(2)-1.2

f(2)=1.4>0 Se aplica el método de la bisección

f(0)=-1.2<0

Se calcula el punto medio

X_(r_1 )=(0+2)/2=1

Se evalúa f(1)=0.5(1)^2+0.3(1)-1.2=-0.4<0

Se identifica el nuevo intervalo

f(0) f(1) f(2) la raiz se halla en el intervalo [1,2]

- +

Se calcula el nuevo punto medio

X_r2=(1+2)/2=1.5

Se evalúa f(1.5)=0.5(1.5)^2+0.3(1.5)-1.2=0.375>0

Se identifica el nuevo intervalo

f(1) f(1.5) f(2) buscamos la raiz en el intervalo [1, 1.5]

+ +

R/ X_(r_3 )=(1+1.5)/2=1.25 Raíz con tres interacciones

c) Debes concluir con que exactitud se encuentra el valor real del valor

...

Descargar como (para miembros actualizados) txt (6 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com