Desigualdades
Enviado por CRIZZGP • 8 de Febrero de 2014 • 2.178 Palabras (9 Páginas) • 265 Visitas
Una desigualdad es un enunciado o ecuación en el que dos expresiones no son iguales, también son parecidas a las ecuaciones solo que en lugar de tener un signo de igual hay unos símbolos que son:<,>, ≤, ≥. En una definición decimos que:
Suponemos que X y Y pertenecen a los reales donde cumplen con las condiciones siguientes:
• X es mayor que Y
• X es menor que Y
De la definición de desigualdad, se deduce que:
• Todo número positivo es mayor que cero
• Todo número negativo es menor que cero
• Si dos números son negativos, es mayor el que tiene menor valor absoluto
• Si a > b entonces b < a .
Los signos > o < determinan dos sentidos opuestos en las desigualdades, dependiendo si el primer
miembro es mayor o menor que el segundo. Se dice que una desigualdad cambia de sentido, cuando el
miembro mayor se convierte en menor o viceversa.
Una desigualdad es una expresión matemática que contiene un signo de desigualdad. Los signos de desigualdad son:
≠ no es igual
< menor que
> mayor que
≤ menor o igual que
≥ mayor o igual que
De la definición de desigualdad, lo mismo que de la escala de los números algebraicos, se deducen algunas consecuencias, a saber:
1º Todo número positivo es mayor que cero
Ejemplo:
5 > 0 ; porque 5 – 0 = 5
2º Todo número negativo es menor que cero
Ejemplo:
–9 < 0 ; porque –9 –0 = –9
3º Si dos números son negativos, es mayor el que tiene menor valor absoluto;
Ejemplo:
–10 > –30; porque -10 – (–30) = –10 +30 = 20
Propiedades de las desigualdades
1. Una desigualdad no varía si se suma o resta la misma cantidad a ambos lados:
a < b / ± c (sumamos o restamos c a ambos lados)
a ± c < b ± c
Ejemplo
2 + x > 16 / – 2 (restamos 2 a ambos lados)
2 + x − 2 > 16 − 2
x > 14
2. Una desigualdad no varía su sentido si se multiplica o divide por un número positivo:
a < b / • c (c > 0) (c es positivo, mayor que cero)
a • c < b • c
a > b / • c (c > 0) (c es positivo, mayor que cero)
a • c > b • c
Ejemplo
3 ≤ 5 • x / :5
3/5 ≤ x esto es, todos los reales mayores o iguales que 3/5
3. Una desigualdad varía su sentido si se multiplica o divide por un número negativo:
a < b / • c (c < 0) (c es negativo, menor que cero)
a • c > b • c
a > b / • c (c < 0) (c es negativo, menor que cero)
a • c < b • c
Ejemplo
15 – 3 • x ≥ 39 / −15
− 3 • x ≥ 39 – 15 /: −3
x ≤ 24: (−3)
x ≤ − 8. Esto es, todos los reales menores o iguales que −8.
De manera recíproca, cuando la parte de la incógnita resulta negativa deben invertirse los signos a ambos lados y cambiar el sentido de la desigualdad, ya que no puede haber desigualdades con incógnita negativa.
1. Una desigualdad no varía si se suma o resta la misma cantidad a ambos lados:
a < b / ± c
a ± c < b ± c
ejemplo
2 + x > 16 / – 2
x > 14
2. Una desigualdad no varía su sentido si se multiplica o divide por un número positivo:
a < b / • c (c > 0)
a • c < b • c
a > b / • c (c > 0)
a • c > b • c
Ejemplo
3 5 • x / :5
3/5 x esto es, todos los reales mayores o iguales que 3/5
3. Una desigualdad varía su sentido si se multiplica o divide por un número negativo:
a < b / • c (c < 0)
a • c > b • c
a > b / •
...