Desigualdades
Enviado por peke5 • 27 de Agosto de 2014 • 1.082 Palabras (5 Páginas) • 204 Visitas
Desigualdades.
Desigualdades o inecuaciones de primer grado con una incógnita
La expresión
a b,
quiere decir que "a" no es igual a "b". Según los valores particulares de "a" y de "b", puede tenerse a > b, que se lee "a" mayor que "b", cuando la diferencia a - b es positiva y a < b, que se lee "a" menor que "b", cuando la diferencia a - b es negativa.
Desigualdad "es la expresión de dos cantidades tales que la una es mayor o menor que la otra".
Lo mismo que en las igualdades, en toda desigualdad, los términos que están a la izquierda del signo mayor o menor, forman el primer miembro de la desigualdad, y los términos de la derecha, forman el segundo miembro. De la definición de desigualdad, lo mismo que de la escala de los números algebraicos, se deducen algunas consecuencias, a saber:
1º Todo número positivo es mayor que cero
Ejemplo:
5 > 0 ;
porque 5 - 0 = 5
2º Todo número negativo es menor que cero
Ejemplo:
-9 < 0 ;
porque -9 -0 = -9
3º Si dos números son negativos, es mayor el que tiene menor valor absoluto;
Ejemplo:
-10 > -30;
porque -10 - (-30) = -10 +30 = 20
Sentido de una desigualdad.
Los signos > o < determinan dos sentidos opuestos o contrarios en las desigualdades, según que el primer miembro sea mayor o menor que el segundo. Se dice que una desigualdad cambia de sentido, cuando el miembro mayor se convierte en menor o viceversa.
Desigualdades absolutas y condicionales.
Así como hay igualdades absolutas, que son las identidades, e igualdades condicionales, que son las ecuaciones; así también hay dos clases de desigualdades: las absolutas y las condicionales.
Desigualdad absoluta es aquella que se verifica para cualquier valor que se atribuya a las literales que figuran en ella
Ejemplo:
a2+ 3 > a
Desigualdades condicional es aquella que sólo se verifica para ciertos valores de las literales:
Ejemplo:
2x - 8 > 0
que solamente satisface para x > 4. En tal caso se dice que 4 es el límite de x.
Las desigualdades condicionales se llaman inecuaciones.
Propiedades de las desigualdades.
1. Una desigualdad no cambia de sentido cuando se añade o se resta un mismo número a cada miembro
Efectivamente si en la desigualdad a > b se designa por "c" lo que falta a "b" para ser igual a "a", se tiene:
a = b + c
Añadiendo un mismo número, positivo o negativo a los miembros, se puede escribir:
a + m = b + c + m
Suprimiendo "c" en el segundo miembro, resulta evidentemente
a + m > b +m
Ejemplos:
9 > 5
9 + 2 > 5 + 2
11 > 7 -2 > -6
-2 -3 > -6 -3
-5 > -9
Consecuencia de esta propiedad: Puede suprimirse un término en un miembro de una desigualdad, teniendo cuidado de agregar en el otro miembro el término simétrico del suprimido; es decir, se puede pasar un término de un miembro a otro, cambiando su signo, porque esto equivale a sumar o restar una misma cantidad a los dos miembros.
Ejemplo:
6x -2 > 4x + 4
6x -4x > 4 + 2
2. Una desigualdad no cambia de sentido cuando se multiplican sus dos miembros por un mismo factor positivo, o se dividen entre un mismo divisor, también positivo.
Sea la desigualdad a > b, es decir, a = b + c
Multiplicando ambos miembros de la desigualdad por un número positivo "m", resulta:
am = bm + cm.
Suprimiendo el término positivo "cm", en el segundo miembro disminuye, y se tiene:
...