Ensayo De Estimadores
Enviado por JesusPrz • 29 de Mayo de 2013 • 313 Palabras (2 Páginas) • 929 Visitas
Ensayo de Estimadores
Estimador: En estadística, un estimador es un estadístico (esto es, una función de la muestra) usado para estimar un parámetro desconocido de la población. Por ejemplo, si se desea conocer el precio medio de un artículo (el parámetro desconocido) se recogerán observaciones del precio de dicho artículo en diversos establecimientos (la muestra) y la media aritmética de las observaciones puede utilizarse como estimador del precio medio.
Para cada parámetro pueden existir varios estimadores diferentes. En general, escogeremos el estimador que posea mejores propiedades que los restantes, como insesgadez, eficiencia, convergencia y robustez (consistencia).
El valor de un estimador proporciona lo que se denomina en estadística una estimación puntual del valor del parámetro en estudio. En general, se suele preferir realizar una estimación mediante un intervalo, esto es, obtener un intervalo [a,b] dentro del cual se espera esté el valor real del parámetro con un cierto nivel de confianza. Utilizar un intervalo resulta más informativo, al proporcionar información sobre el posible error de estimación, asociado con la amplitud de dicho intervalo. El nivel de confianza es la probabilidad de que a priori el verdadero valor del parámetro quede contenido en el intervalo.
Características de los estimadores
1) Sesgo. Se dice que un estimador es insesgado si la Media de la distribución del estimador es igual al parámetro.
Estimadores insesgados son la Media muestral (estimador de la Media de la población) y la Varianza (estimador de la Varianza de la población):
2) Consistencia. Un estimador es consistente si aproxima el valor del parámetro cuanto mayor es n (tamaño de la muestra).
Algunos estimadores consistentes son:
3) Eficiencia. Diremos que un estimador es más eficiente que otro si la Varianza de la distribución muestra del estimador es menor a la del otro estimador. Cuanto menor es la eficiencia, menor es la confianza de que el estadístico obtenido en la muestra aproxime al parámetro poblacional.
...