ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Ensayo Diferencial


Enviado por   •  12 de Septiembre de 2012  •  5.090 Palabras (21 Páginas)  •  703 Visitas

Página 1 de 21

Cálculo diferencial

El cálculo diferencial es una parte importante del análisis matemático y dentro del mismo del cálculo. Consiste en el estudio del cambio de las variables dependientes cuando cambian las variables independientes de las funciones o campos objetos del análisis. El principal objeto de estudio en el cálculo diferencial es la derivada. Una noción estrechamente relacionada es la de diferencial de una función.

En el estudio del cambio de una función, es decir, cuando cambian sus variables independientes es de especial interés para el cálculo diferencial el caso en el que el cambio de las variables es infinitesimal, esto es, cuando dicho cambio tiende a cero (se hace tan pequeño como se desee). Y es que el cálculo diferencial se apoya constantemente en el concepto básico del límite. El paso al límite es la principal herramienta que permite desarrollar la teoría del cálculo diferencial y la que lo diferencia claramente del álgebra.

Desde el punto de vista matemático de las funciones y la geometría, la derivada de una función en un cierto punto es una medida de la tasa en la cual una función cambia conforme un argumento se modifica. Esto es, una derivada involucra, en términos matemáticos, una tasa de cambio. Una derivada es el cálculo de las pendientes instantáneas de en cada punto . Esto se corresponde a las pendientes de las tangentes de la gráfica de dicha función en sus puntos (una tangente por punto); Las derivadas pueden ser utilizadas para conocer la concavidad de una función, sus intervalos de crecimiento,

sus máximos y mínimos.

La inversa de una derivada se llama primitiva, antiderivada o integral indefinida.

La Diferenciación puede ser usada para determinar el cambio que se produce como resultado de otro cambio, si está determinada una relación matemática entre dos objetos.

Una función es diferenciable en un punto si su derivada existe en ese punto; una función es diferenciable en un intervalo si lo es en cada punto perteneciente al intervalo. Si una función no es continua en c, entonces no puede ser diferenciable en c; sin embargo, aunque una función sea continua en c, puede no ser diferenciable. Es decir, toda función diferenciable en un punto C es continua en C, pero no toda función continua en C es diferenciable en C (como f(x) = |x| es continua pero no diferenciable en x = 0).

Definición de Derivada

Las derivadas se definen tomando el límite de la pendiente de las rectas secantes conforme se van aproximando a la recta tangente.

Es difícil hallar directamente la pendiente de la recta tangente de una función porque sólo conocemos un punto de ésta, el punto donde ha de ser tangente a la función. Por ello, aproximaremos la recta tangente por rectas secantes. Cuando tomemos el límite de las pendientes de las secantes próximas, obtendremos la pendiente de la recta tangente.

Para obtener estas pendientes, tomemos un número arbitrariamente pequeño que llamaremos h. h representa una pequeña variación en x, y puede ser tanto positivo como negativo. La pendiente de la recta entre los puntos y es

Esta expresión

es un Cociente Diferencial de Newton. La derivada de f en x es el límite del valor del cociente diferencial conforme las líneas secantes se acercan más a la tangente:

Si la derivada de f existe en cada punto x, podemos definir la derivada de f como la función cuyo valor en el punto x es la derivada de f en x.

Puesto que la inmediata sustitución de h por 0 da como resultado una división por cero, calcular la derivada directamente puede ser poco intuitivo. Una técnica es simplificar el numerador de modo que la h del denominador pueda ser cancelada. Esto resulta muy sencillo con funciones polinómicas, pero para la mayoría de las funciones resulta demasiado complicado. Afortunadamente, hay reglas generales que facilitan la diferenciación de la mayoría de las funciones descritas; ver abajo.

Algunos ejemplos de cómo utilizar este cociente:

[editar] Ejemplo 1

Consideremos la siguiente función:

| |

Entonces:

| |

| |

Esta función es constante, para cualquier punto de su dominio vale 5 (por eso f(x+h)=5). Nótese el último paso, donde h tiende a cero pero nunca lo alcanza. Si pensamos un poco, observaremos que la derivada además de ser la pendiente de la recta tangente a la curva, es a la vez, la recta secante a la misma curva.

[editar] Ejemplo 2

Consideremos la gráfica de . Esta recta tiene una pendiente igual a 2.0 en cada punto. Utilizando el cociente mostrado arriba (junto a los conceptos de límite, secante, y tangente) podremos determinar las pendientes en los puntos 4 y 5:

| |

Entonces:

| |

| |

| |

| |

Y vemos que se cumple para cualquier número n:

| |

| |

Por tanto, se deduce que el valor de la función derivada de una recta es igual a la pendiente de la misma.

[editar] Ejemplo 3

Mediante esta diferenciación, se puede calcular la pendiente de una curva. Consideremos que:

Entonces:

| |

| |

| |

Para cualquier punto x, la pendiente de la función es .

El Cociente Diferencial Alternativo

La derivada de f(x) (tal como la definió Newton) se describió como el límite, conforme h se aproxima a cero. Una explicación alternativa de la derivada puede ser interpretada a partir del cociente de Newton. Si se utiliza la fórmula anterior, la derivada en c es igual al límite conforme h se aproxima a cero de [f(c + h) - f(c)] / h. Si se deja que h = x - c (por ende c + h = x), entonces x se aproxima a c (conforme h tiende a cero). Así, la derivada es igual al límite conforme x se aproxima a c, de [f(x) - f(c)] / (x - c). Esta definición se utiliza para una demostración parcial de la regla de la cadena.

Problemas que resuelve

Recta tangente a una función en un punto

La recta tangente a una función f(nafia) es como se ha visto el límite de las rectas secantes cuando uno de los puntos de corte de la secante con la función se hace tender hacia el otro punto de corte. También puede definirse a la recta tangente como la mejor aproximación lineal a la función en su punto de tangencia, esto es, la recta tangente es la función polinómica de primer grado que mejor aproxima a la función localmente

en el punto de tangencia que consideremos.

Si conocemos la ecuación de la recta tangente ta(x) a la función f(x) en el punto "a" podemos tomar ta(x) como una aproximación razonablemente buena de f(x) en las proximidades del punto "a". Esto quiere decir que si tomamos un punto "a + h"

...

Descargar como (para miembros actualizados) txt (32 Kb)
Leer 20 páginas más »
Disponible sólo en Clubensayos.com