ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Funciones


Enviado por   •  9 de Mayo de 2012  •  682 Palabras (3 Páginas)  •  380 Visitas

Página 1 de 3

Función lineal.

Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio son también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.

f: R —> R / f(x) = a.x+b donde a y b son números reales, es una función lineal.

Este último renglón se lee: f de R en R tal que f de equis es igual a a.x+b

Por ejemplo, son funciones lineales f: f(x) = 2x+5 , g: g(x) = -3x+7, h: h(x) = 4

Función cuadrática

En matemáticas, una función cuadrática o función de segundo grado es una función polinómica definida como: f(X)= aX^2 + bx + c en donde a, b y c son números reales (constantes) y a es distinto de 0.

La representación gráfica en el plano cartesiano de una función cuadrática es una parábola, cuyo eje de simetría es paralelo al eje de las ordenadas. La parábola se abrirá hacia arriba si el signo de a es positivo, y hacia abajo en caso contrario. El estudio de las funciones cuadráticas tiene numerosas aplicaciones en campos muy diversos, como por ejemplo la caída libre o el tiro parabólico.

La derivada de una función cuadrática es una función lineal y su integral una función cúbica.

Gráficas de funciones cuadráticas.

Valor absoluto

En matemática, el valor absoluto o módulo de un número real es su valor numérico sin tener en cuenta su signo, sea este positivo (+) o negativo (-). Así, por ejemplo, 3 es el valor absoluto de 3 y de -3.

El valor absoluto está relacionado con las nociones de magnitud, distancia y norma en diferentes contextos matemáticos y físicos. El concepto de valor absoluto de un número real puede generalizarse a muchos otros objetos matemáticos, como son los cuaterniones, anillos ordenados, cuerpos o espacios vectoriales.

Gráfica de la función valor absoluto.

FUNCIONES IRRACIONALES

Las funciones irracionales son aquellas cuya expresión matemática f(x) presenta un radical: donde g(x) es una función polinómica o una función racional.

Si n es par, el radical está definido para g(x) ³ 0; así que a los efectos de calcular el dominio de f(x) que contenga un radical, habrá que imponer la condición anterior al conjunto de la expresión f(x).

Funciones exponenciales

Se llaman así a todas aquellas funciones de la forma f(x) = bx, en donde la base b, es una constante y el exponente la variable independiente. Estas funciones tienen gran aplicación en campos muy diversos como la biología, administración, economía, química, física e ingeniería.

La definición de función exponencial exige que la base sea siempre positiva y diferente de uno (b>0 y b≠1). La condición que b sea diferente de uno se impone, debido a que al reemplazar a b por 1, la función bx se transforma

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com