ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Geologia De Las Rocas


Enviado por   •  29 de Julio de 2013  •  415 Palabras (2 Páginas)  •  202 Visitas

Página 1 de 2

• Breve reseña:

Desarrollo hecho por Christian Otto Mohr (1835-1918), el círculo de Mohr es un método gráfico para determinar el estado tensional en los distintos puntos de un cuerpo. Entre las tensiones que existentes en un cuerpo sometido a un cierto estado de cargas y con unas ciertas restricciones, importan en general las tensiones principales, que son las tensiones que existen sobre ciertos planos del cuerpo, donde las tensiones de corte nulas. Estas tensiones son de importancia para el estudio de la resistencia mecánica de una pieza.

Este método tiene aplicación para estados tensionales en dos y tres dimensiones.

• Teoría del círculo de Mohr para dos dimensiones:

Considere un cuerpo sobre el cuál actúa un estado plano de cargas. Consideremos al plano de carga para nuestro sistema al plano xy (ver figura 1), de modo de que no existan esfuerzos en el sentido perpendicular a este (esfuerzos en z nulos). Adoptamos un elemento triangular donde se supone que los ejes x e y son principales, o sea las tensiones de corte en esos planos son nulas. Esta suposición se hace con el fin de no complicar por demás la matemática siendo el objeto de este desarrollo conocer el desarrollo matemático a fin de ser asociado con el modelo físico:

Figura 1

En la figura 1, además de los ejes x e y, se muestra otro par de ejes coordenados los cuales han sido rotados un ángulo θ respecto del eje z (normal al plano), el par de ejes x1 e y1 son normal y tangente al plano Aθ respectivamente.

Queremos obtener una relación entre las tensiones en las áreas Ax , Ay y Aθ. Evaluemos el equilibrio de fuerzas en la dirección del eje x:

− σ x .A x − τθ .A θ .senθ + σθ .A θ .cos θ = 0 (1)

Ahora evaluemos el equilibrio de fuerzas en la dirección del eje y:

−σy .A y + τθ .Aθ. Cos θ + σθ .Aθ .senθ = 0 (2)

Y considerando las relaciones trigonométricas:

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com