Importancia de la Estadística
Enviado por giselachela • 26 de Abril de 2013 • 2.573 Palabras (11 Páginas) • 355 Visitas
Estadista:
Persona que describe y estudia la población, riqueza, entre otros., de un pueblo, provincia o nación.
Estadística:
Compilación clasificada de datos sobre hechos físicos o morales que se prestan a numeración o recuento y a comparación de las cifras a ellos referentes.
La investigación estadística comprende, además de una frase preparatoria, la obtención de los datos necesarios, la evaluación de la calidad de los mismos, la consecuente depuración, su presencia y análisis, y la interpretación de los resultados de dicho análisis.
Importancia de la Estadística:
El aspecto más importante es la obtención de conclusiones basadas en datos experimentales, esto se conoce como inferencia estadística. La estadística, si bien es una ciencia de extracción exacta, tiene una injerencia directa en cuestiones sociales por lo cual su utilidad práctica es mucho más comprensible que lo que sucede normalmente con otras ciencias exactas como la matemática.
Podemos decir que la función principal de la estadística es justamente la recolección y agrupamiento de datos de diverso tipo para construir con ellos informes estadísticos que nos den idea sobre diferentes y muy variados temas, siempre desde un punto de vista cuantitativo y no cualitativo. Esto es muy importante remarcarlo ya que la estadística se convierte entonces en una ciencia que nos habla de cantidades (por ejemplo, cuántas personas viven en un país por metro cuadrado) pero no nos da información directa sobre la calidad de vida de esas personas.
Lo interesante de la estadística como ciencia es que en muchos casos, la información cuantitativa que nos brinda nos permite conocer a ese nivel mucho mejor a una sociedad, por ejemplo cuántas personas viven en un país, cuál es la tasa de desempleo, cuál es la tasa de indigencia o pobreza, cuál es el nivel promedio de educación de esa sociedad, etc. Todos estos datos numéricos son utilizados por los responsables del Estado a través de sus distintos organismos y secretarías para luego realizar proyectos de diferente tipo que tengan que ver con mejorar esa situación o mantenerla en el caso de que sea buena. En algunos casos, aunque no directamente, la estadística también nos permite inferir (no conocer) la calidad de vida de una población ya que si encontramos altas tasas de desempleo, pobreza y marginalidad podremos suponer que la calidad de vida es muy baja.
La estadística tiene una utilidad no sólo en aspectos sociales si no que también sirve para todo tipo de investigación científica si se tiene en cuenta que los datos estadísticos son el resultado de varios casos de entre los cuales se toma un promedio. Así, una estadística puede servir para una investigación científica al demostrar que un porcentaje determinado de los casos observados representó un resultado particular y no otro.
Clasificación de la Estadística:
La estadística se puede clasificar en dos grandes ramas:
* Estadística descriptiva o deductiva.
* Estadística inferencial o inductiva.
Estadística Descriptiva o Deductiva:
Se emplea simplemente para resumir de forma numérica o gráfica un conjunto de datos. Se restringe a describir los datos que se analizan. Si aplicamos las herramientas ofrecidas por la estadística descriptiva a una muestra, solo nos limitaremos a describir los datos encontrados en dicha muestra, no se podrá generalizar la información hacia la población.
En relación a la estadística descriptiva, Ernesto Rivas González dice; "Para el estudio de estas muestras, la estadística descriptiva nos provee de todos sus medidas; medidas que cuando quieran ser aplicadas al universo total, no tendrán la misma exactitud que tienen para la muestra, es decir al estimarse para el universo vendrá dada con cierto margen de error; esto significa que el valor de la medida calculada para la muestra, en el oscilará dentro de cierto límite de confianza, que casi siempre es de un 95 a 99% de los casos.
Los estadísticos se refieren a esta rama como inferencia estadística, esta implica generalizaciones y afirmaciones con respecto a la probabilidad de su validez.
Estadística Inferencial o Inductiva:
La estadística inferencial permite realizar conclusiones o inferencias, basándose en los datos simplificados y analizados de una muestra hacia la población o universo. Por ejemplo, a partir de una muestra representativa tomada a los habitantes de una ciudad, se podrá inferir la votación de todos los ciudadanos que cumplan los requisitos con un error de aproximación.
La estadística Inferencial, por otro lado, se refiere a la rama de la estadística que trata de los procesos inferenciales, la que a su vez vislumbra la teoría de estimación y prueba de hipótesis. Uno de los primordiales aspectos de la inferencia estadística es el proceso que radica en utilizar estadísticos muéstrales para adquirir conclusiones sobre los verdaderos parámetros de la población.
Los requerimientos de los métodos de la inferencia estadística se originan de la necesidad del muestreo. Al tornarse muy grande una población, comúnmente resulta demasiado costoso, prolongado en el tiempo y complicado obtener información de la población completa. Las decisiones con respecto a las características de la población se deben basar en la información contenida en una muestra de esa población. La teoría de la probabilidad suministra él vínculo, determinando la probabilidad de que los resultados provenientes de la muestra reflejen los resultados que se obtendrían de la población.
Diferencia de Estadística Descriptiva e Inferencial:
Estadística Descriptiva se refiere a la recolección, presentación, descripción, análisis e interpretación de una colección de datos, esencialmente consiste en resumir éstos con uno o dos elementos de información (medidas descriptivas) que caracterizan la totalidad de los mismos. Puede utilizarse para resumir o describir cualquier conjunto ya sea que se trate de una población o de una muestra, cuando en la etapa preliminar de la Inferencia Estadística se conocen los elementos de una muestra.
Estadística Inferencial se refiere al proceso de lograr generalizaciones acerca de las propiedades del todo, población, partiendo de lo específico, muestra. Las cuales llevan implícitos una serie de riesgos. Para que éstas generalizaciones sean válidas la muestra deben ser representativa de la población y la calidad de la información debe ser controlada, además puesto que las conclusiones así extraídas están sujetas a errores, se tendrá que especificar el riesgo o probabilidad que con que se pueden cometer esos errores. La estadística inferencial es el conjunto de técnicas que se utiliza para obtener conclusiones
...