ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Ingenieria Industrial


Enviado por   •  3 de Diciembre de 2013  •  216 Palabras (1 Páginas)  •  222 Visitas

Existen muchas situaciones, dentro y fuera de las matemáticas, en que necesitamos estimar una diferencia, como por ejemplo en las aproximaciones de valores de funciones, en el cálculo de errores al efectuar mediciones (Valor real menos valor aproximado) o simplemente al calcular variaciones de la variable dependiente cuando la variable independiente varía "un poco", etc. Utilizando a la recta tangente como la mejor aproximación lineal a la función en las cercanías del punto de tangencia, aproximaremos esta DIFERENCIA con la diferencia sobre la recta tangente, a la que llamaremos EL DIFERENCIAL de la función en el punto

Puede ser usada para determinar el cambio que se produce como resultado de otro cambio, si está determinada una relación matemática entre dos objetos.

Una función es diferenciable en un punto x si su derivada existe en ese punto; una función es diferenciable en un intervalo si lo es en cada punto x perteneciente al intervalo. Si una función no es continua en c, entonces no puede ser diferenciable en c; sin embargo, aunque una función sea continua en c, puede no ser diferenciable. Es decir, toda función diferenciable en un punto C es continua en C, pero no toda función continua en C es diferenciable en C (como f(x) = |x| es continua pero no diferenciable en x = 0).

...

Descargar como (para miembros actualizados) txt (1 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com