Matemáticas FUNCIONES CUADRÁTICAS
Enviado por Hernan Bensuley • 8 de Julio de 2016 • Trabajo • 3.756 Palabras (16 Páginas) • 686 Visitas
Matemáticas
FUNCIONES CUADRÁTICAS
4º ESO
- Si en un cuadrado aumentamos en 6 unidades dos lados paralelos obtenemos un rectángulo. Calcula el área del rectángulo en función del lado x del cuadrado. [pic 1]
- Una mujer tiene un estanque rectangular de 5x3 metros. Quiere hacer un camino alrededor del estanque como muestra el siguiente dibujo:[pic 2]. La anchura del camino ha de ser constante en todo el contorno.
Llama x a la anchura constante del camino. ¿Cuál será el área A del camino?
Calcula los valores de A cuando x es 0, 1, 2, 3 y 4. Escribe los valores en una tabla.
Dibuja unos ejes y dibuja los puntos (x, A).
Si el área del camino ha de ser de 30 m2, utiliza la gráfica y averigua el ancho x del camino.
¿Para qué valor de x es A = 100?
Actividad resuelta
- El director de un teatro estima que si cobra 30 € por localidad, podría contar con 500 espectadores y que cada bajada de 1 € le supondría 100 personas más. Calcula las ganancias obtenidas en función del número de bajadas del precio.
Observa la tabla:
euros descuento | 0 | 1 | 2 | x |
Precio | 30 | 30-1 | 30-2 | 30-x |
Nº espectadores | 500 | 500+100.1 | 500+100.2 | 500+ 100x |
Ingresos | 30.500 | (30-1)·(500+100.1) | (30-2)·(500+100.2) | (30-x)·(500+100.x) |
Los ingresos obtenidos son
[pic 3]
siendo x el nº de euros de descuento, en el precio de la entrada.
Una función cuadrática es toda función que pueda escribirse de la forma f(x) = a x2 + b x + c, donde a, b y c son números cualesquiera, con la condición de que a sea distinto de 0 . |
Las funciones f(x) = x2 + 6x, g(x) = x2 + 16 y G(x) = - 100 x2 + 2500 x + 15000
que se corresponden con las tres primeras actividades, son ejemplos de funciones cuadráticas.
Gráfica de las funciones cuadráticas
La función cuadrática más sencilla es f(x) = x2 cuya gráfica es:
x | -3 | -2 | -1 | -0'5 | 0 | 0'5 | 1 | 2 | 3 |
f(x) = x2 | 9 | 4 | 1 | 0'25 | 0 | 0'25 | 1 | 4 | 9 |
[pic 4]
Esta curva simétrica se llama parábola.
Funciones cuadráticas más complejas se dibujan de la misma forma.
Dibujemos la gráfica de f(x) = x2 -2 x - 3.
x | -1 | 0 | 1 | 2 | 3 | 4 |
f(x) | 0 | -3 | -4 | -3 | 0 | 5 |
Completando la gráfica obtengo:
[pic 5]
Actividades resueltas
- Dada la parábola y = x2 - 4 x + 3, determina con precisión las coordenadas de los puntos de la figura:
[pic 6]
a. Del punto A(x,y) conocemos que x = 3'5. Como A es un punto de la parábola, sus coordenadas cumplirán la ecuación, es decir, y = 3'5 2 - 4·3'5 + 3 = 1'25. Por tanto, A = (3'5,1'25).
b. Del punto B(x,y) conocemos que x = 7. Como B no pertenece a la parábola, no disponemos de ninguna relación que nos permita deducir y en función de x: no es posible conocer con precisión las coordenadas de B.
c. El punto C(x,y) está situado sobre el eje de ordenadas, luego x = 0. Como también es un punto de la parábola, verificará y = 02 - 4·0 + 3 = 3 .Luego C = (0,3).
d. D = (x,5) pertenece a la parábola. Sustituyendo y por 5 en la ecuación de la parábola:
[pic 7], que nos proporciona las soluciones aproximadas x = -0'45 y x = 4'45. Observando la gráfica se concluye que el valor adecuado es el segundo (¿por qué?). Luego D = (4'45,5).
e. Los puntos E y F pertenecen al eje OX. Sus coordenadas serán de la forma (x,0) y por ser de la parábola verificarán la ecuación de 2º grado x2 - 4x + 3 = 0 , cuyas soluciones son x = 1 y x = 3. Por tanto, los puntos serán E = (1,0) y F = (3,0).
f. Por la forma simétrica de la parábola, la abscisa de G = (x,y) es el punto medio del segmento [pic 8], es decir, [pic 9]. Sustituyendo este valor en la ecuación de la parábola, obtenemos su segunda coordenada y = 22 - 4·2 + 3 = 4 - 8 + 3 = -1. Luego G = (2,-1).
g. Calculemos las coordenadas del punto H´(x,y) de la parábola que está "justo encima" de H.
Como x = 5, entonces y = 52 - 4·5 + 3 = 25 - 20 + 3 = 8, es decir, H´= (5,8). H tiene igual abscisa 5 y su ordenada es 6 unidades menos que H´, por tanto, H = (5,2).
h. Calculamos las coordenadas del punto I´(x,7) que está en la parábola "justo a la derecha" de I. Como pertenece a la parábola, [pic 10]cuyas soluciones aproximadas son x = -0'88 y x = 4'83. I tiene la misma ordenada 7 y su abscisa es 4'2 unidades menos que la abscisa de I´, es decir, I = (0'63,7).
...