ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Mecánica relativista


Enviado por   •  5 de Julio de 2015  •  2.837 Palabras (12 Páginas)  •  280 Visitas

Página 1 de 12

En física clásica se asumía que todos los eventos están causados por otros anteriores y que dicha causalidad es expresable en términos de leyes de la naturaleza. Dicha pretensión llegó a su punto más alto en la afirmación de Pierre Simon Laplace. Laplace afirmó que si se conoce el estado actual del mundo con total precisión, uno puede predecir cualquier evento en el futuro. Esta perspectiva se conoce como determinismo o más precisamente determinismo causal.

Aunque el determinismo de Laplace parece correcto respecto a las ecuaciones aproximadas de la física clásica, la teoría del caos ha añadido pequeñas complicaciones. Muchos sistemas presentan una fuerte sensibilidad a las condiciones iniciales, lo que significa que condiciones iniciales muy similares en ciertos sistemas pueden conducir a comportamientos a largo plazo muy diferentes. Eso sucede por ejemplo en el tiempo atmosférico. Hacia 1987 era habitual usar superordenadores en la predicción del tiempo, por ejemplo el Cray X-MP del Centro Europeo para el Pronóstico del Tiempo a Medio Plazo, que operaba con una capacidad máxima de 800 megaflops, podía calcular en apenas media hora un pronóstico aceptable del tiempo para el día siguiente en todo el hemisferio. Y aunque cada día se realizaban pronósticos de los siguientes diez días, los resultados del pronóstico a partir del cuarto o quinto día diferían sensiblemente de lo previsto por el ordenador.1

Sin embargo, por encima de la impredictibilidad práctica causada por el comportamiento estocástico o caótico de los sistemas clásicos, está el hecho de que la mecánica cuántica presenta junto con una evolución determinista recogida en la ecuación de Schrödinger, una evolución no-determinista recogida en el postulado del colapso de la función de onda.

Mecánica relativista[editar]

De acuerdo con los postulados comunes de la física newtoniana, la causa precede al efecto en el tiempo. Sin embargo, en la física moderna, el concepto más simple de causalidad ha necesitado ser clarificado. Por ejemplo, en la teoría de la relatividad especial, el concepto de causalidad se mantiene, pero el significado de "preceder en el tiempo" sigue siendo absoluto y no depende del observador (aunque no pasa igual con el concepto de simultaneidad de conceptos no relacionados causalmente, que ahora sí pasan a depender del observador). Consecuentemente, el principio relativista de causalidad dice que la causa precede a su efecto para observadores inerciales. Esto implica que, en términos de la teoría de la relatividad especial, una condición necesaria para que A sea causa de B, es que B sea un evento que pertenece al cono de luz de A (en términos de distancias espacio-temporales se dice que A y B están separados por intervalo temporaloide). A pesar de algunas obras de ciencia ficción, en los supuestos bajo los cuales la teoría de la relatividad especial es adecuada para describir el mundo, resulta imposible, no sólo influir en el pasado, sino también en objetos distantes mediante señales que se muevan más rápidas que la velocidad de la luz.

En la teoría general de la relatividad, el concepto de causalidad se generaliza de la manera más directa posible: el efecto debe pertenecer al cono de luz futuro de su causa, aún en espacio-tiempos curvos; aunque pueden aparecer ciertas complicaciones, como cuando uno trata soluciones exactas de las ecuaciones de Einstein, como el Universo de Gödel, donde existen curvas temporales cerradas, y un observador puede verse a sí mismo en el pasado, y otra serie de peculiaridades que, no obstante, no incurren en ninguna paradoja.2

Mecánica cuántica[editar]

Nuevas sutilezas se toman en cuenta cuando se investiga la causalidad en mecánica cuántica no relativista y teoría cuántica de campos (mecánica cuántica relativista). En la teoría cuántica de campos, la causalidad está estrechamente relacionada con el principio de localidad. El análisis de ese principio es delicado, y muchas veces ese análisis pasa por el uso del teorema de Bell. De todas maneras, el resultado de dicho análisis parece depender, en parte, de desde qué interpretación de la mecánica cuántica se interpreten los resultados.

Sin embargo, se sospecha que, aún con todas estas sutilezas, el principio de causalidad sigue siendo un concepto válido de toda teoría física realista. Así, parece que la noción de que los eventos pueden ser ordenados en causas y efectos es necesaria para prevenir ciertas paradojas del mundo que conocemos.

Causalidad y mecánica cuántica[editar]

El principio de causalidad en su forma original postula que todo efecto -todo evento- debe tener siempre una causa (que, en idénticas circunstancias, una causa tenga siempre un mismo efecto se conoce como "principio de uniformidad"). Se usa para la búsqueda de leyes definidas, que asignan a cada causa su correspondiente efecto.

Este principio refleja un comportamiento mecánico de la naturaleza, que hasta el siglo XX se había aceptado e interpretado en un sentido determinista. No obstante, a principios de este siglo Heisenberg y Born introdujeron el principio de incertidumbre y las probabilidades como ingrediente esencial de la mecánica cuántica. Entre los principios o postulados de la mecánica cuántica está el colapso de la función de onda que claramente no satisface el principio de causalidad clásico.

Teoría atómica[editar]

Heisenberg, Schrödigner y otros pioneros de la mecánica cuántica introdujeron un modelo de átomo que renunciaba a la visión clásica de un compuesto de partículas y ondas. En este y otros modelos cuánticos exitosos se apreció que cualquier intento de establecer analogías entre la estructura atómica y nuestra intuición sobre objetos macroscópicos estaba condenado al fracaso . La formulación matemática de la teoría de Heisenberg se llamó inicialmente mecánica matricial, porque requería del uso de las matrices del álgebra lineal clásica. Esta formulación resultó complementaria de la mecánica ondulatoria, del físico austriaco Erwin Schrödinger.

Usando esta mecánica, los niveles de energía u órbitas de electrones se describen en términos probabilísticos: en general, de una misma causa no se deriva siempre un mismo efecto, sino que existe una variedad de posibles efectos. Sólo se puede predecir (aunque, en principio, con una fiabilidad determinista total) la probabilidad de que, cuando la causa se produzca, ocurra cada uno de los efectos. Este comportamiento resulta extraño para nuestra experiencia ordinaria. Su explicación la podemos resumir en los siguientes puntos, que deben aceptarse como postulados avalados por miles de observaciones experimentales:

Existen

...

Descargar como (para miembros actualizados) txt (19 Kb)
Leer 11 páginas más »
Disponible sólo en Clubensayos.com