PROBABILIDAD Y ESTADÍSTICA UNIDAD I. TEORÍA DE LA PROBABILIDAD
Enviado por ManeMcz • 12 de Noviembre de 2013 • 23.988 Palabras (96 Páginas) • 447 Visitas
PROBABILIDAD Y ESTADÍSTICA
UNIDAD I. TEORÍA DE LA PROBABILIDAD
1.1 Conjuntos, sus operaciones, leyes y su representación
Definición de conjunto
Por Extensión y por Comprensión
Un conjunto queda perfectamente definido si se conocen con exactitud los elementos que lo integran o que pertenecen a él; es decir, si se nombran todos sus elementos o bien si se usa un enunciado o propiedad que lo identifique. Independientemente de la forma en que se lo represente, siempre se usa una letra mayúscula que lo define. Esta letra mayúscula representa a un conjunto específico de elementos.
Existen dos maneras de definir un conjunto dado:
a) Por extensión o enumeración: se define nombrando a cada elemento del conjunto.
Por comprensión: se define mediante un enunciado o atributo que representa al conjunto (se busca una frase que represente a la totalidad de elementos sin nombrar a ninguno en particular).
Por comprensión Por extensión
A = {Números dígitos} A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
B = {Números pares] B = {2, 4, 6, 8, 10, 12, 14, ...}
C = {Múltiplos de 5} C = {5, 10, 15, 20, 25, 30, 35...}
Diagrama de Venn y entre llaves.
Es habitual representar los conjuntos en forma gráfica mediante los Diagramas de Venn.
En estos diagramas el conjunto se representa mediante una superficie limitada por una línea. En su interior se colocan los elementos del conjunto. Cada porción del plano limitada se nombra con una letra mayúscula.
El conjunto A está formado por los elementos 1, 2, 3.
El conjunto B está formado por los elementos a, b, c, d.
Existe, además, otra forma de representarlos que es entre llaves.
En estos ejemplos se escribe:
A = {1, 2, 3}
B = {a, b, c, d}
Otro ejemplo:
Por diagrama Entre llaves
S = {a, e, i, o, u}
Se escribe una coma para separar los elementos.
Conjunto Disjunto, Conjunto Subconjunto
1) Conjuntos disjuntos: Son aquellos conjuntos que no tienen elementos en común.
Por ejemplo:
El conjunto A tiene como elementos a los números 1, 2 y 3. El conjunto B tiene como elementos a las letras a, b, c y d. No hay elementos comunes entre los conjuntos A y B. En otras palabras, ningún elemento del conjunto A pertenece al conjunto B; a su vez, ningún elemento de B pertenece al conjunto A.
En consecuencia, los conjuntos A y B son disjuntos.
Tomando otro ejemplo:
Si E = { pizarrón, tiza, borrador} (Conjunto E formado por pizarrón, tiza, borrador)
F = { tiza, profesor, regla} (Conjunto F formado por tiza, profesor, regla)
G = { niño, cuaderno, sala, lápiz } (Conjunto G formado por niño, cuaderno, sala, lápiz)
E y G son conjuntos disjuntos porque: pizarrón, tiza, borrador no pertenecen al conjunto G.
E y F no son disjuntos ya que tiza pertenece a E y también a F.
F y G son conjuntos disjuntos porque: tiza, profesor, regla no pertenecen a G, y niño, cuaderno, sala, lápiz no pertenecen a F.
2) Conjunto Subconjunto: Un conjunto es subconjunto de otro si todos los elementos de un conjunto también pertenecen al otro.
Si se tienen los siguientes conjuntos:
P = { a, e, i, o, u } y R = { a, i }
R es subconjunto de P porque todos los elementos de R están en P.
En general, para expresar que un conjunto es subconjunto de otro conjunto se pone entre ellos el símbolo . En este ejemplo se escribe:
R P
Se lee “ R es subconjunto de P”
no es subconjunto de otro cuando al menos un elemento del primero no pertenece al segundo conjunto. El símbolo que representa la frase “no es subconjunto de“ es .
Si se tienen los siguientes conjuntos:
C = { 3, 5, 7, 9 } y H = { 3, 5, 8 }
H no es subconjunto de C porque el elemento 8 no pertenece al conjunto C. Se escribe:
H C
Se lee “ H no es subconjunto de C”
También los subconjuntos pueden representarse mediante Diagramas de Venn.
Ejemplo:
S C
Propiedades de la relación subconjunto
1.- Todo conjunto es subconjunto de sí mismo.
Si T = { x, z, y, z }, se tiene que T T
2.- El conjunto vacío es subconjunto de cualquier conjunto (el conjunto vacío es aquel que no tiene elementos; se representa por: { } o bien por Ø
Si se tiene el conjunto B se puede establecer que Ø T
Relaciones entre conjuntos
Sean los conjuntos
A = { 5, 7 }
B = { 3, 5, 7, 9 }
Los elementos 5 y 7 forman parte del conjunto A.
En otras palabras, los elementos 5 y 7 pertenecen ( ) al conjunto A.
5 A y 7 A
Los elementos 3, 5, 7, 9 forman parte del conjunto B, es decir, pertenecen al conjunto B
3 B 5 B 7 B 9 B
Se puede observar, además, en el diagrama, que los elementos del conjunto A están incluidos dentro del conjunto B; por lo tanto, dichos elementos también pertenecen al conjunto B.
En otras palabras, A es subconjunto de B.
A B
Operaciones entre conjuntos
Intersección de conjuntos ( ) La intersección entre dos o más conjuntos es otro conjunto formado por los elementos comunes a ellos; es decir, a los elementos comunes o repetidos de ambos conjuntos A y B.
La intersección se simboliza con el signo y se coloca entre las letras que representan a cada conjunto.
Conjunto A = {3, 8, 24}
Conjunto B = {13, 7, 8, 12}
Los elementos que se repiten entre A y B son: 3 y 8. Estos elementos se anotan en la parte de color amarillo pues representa el lugar común entre ambos conjuntos.
Otro ejemplo:
B = { a, b, c, d, e, f }
C = { a, d, f, g, h }
B C = { a, d, f }
En el diagrama de Venn la parte ennegrecida representa la intersección de B y C.
Unión de conjuntos: La unión de dos o más conjuntos es otro conjunto formado por los elementos que pertenecen a uno u otro conjunto o a ambos. La unión se representa por el símbolo Si un elemento
...