ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Principio De Incertidumbre De Heisenberg


Enviado por   •  1 de Julio de 2012  •  1.841 Palabras (8 Páginas)  •  3.350 Visitas

Página 1 de 8

Introducción

El principio de incertidumbre desempeñó un importante papel en el desarrollo de la mecánica cuántica y en el progreso del pensamiento filosófico moderno. En 1932, Heisenberg fue galardonado con el Premio Nobel de Física. Entre sus numerosos escritos se encuentran Los principios físicos de la teoría cuántica, Radiación cósmica, Física y filosofía e Introducción a la teoría unificada de las partículas elementales.

Considero de mucha importancia este principio, debido a la naturaleza del mismo, en este trabajo de describe de la manera más practica todas las características del mismo, aunque a veces se piense que no es necesario, puede servir en muchas ocasiones para delatar algo, o simplemente para justificarlo.

El Principio de Incertidumbre de Heisenberg es sin duda algunos unos de los enigmas de la historia, debido a que este menciona que "Lo que estudias, lo cambias", entonces, si esto es cierto, ¿Qué tanto a cambiado la realidad de lo que nos narra la historia.

Principio de Incertidumbre

En mecánica cuántica el principio de indeterminación de Heisenberg afirma que no se puede determinar, simultáneamente y con precisión arbitraria, ciertos pares de variables físicas, como son, por ejemplo, la posición y la cantidad de movimiento de un objeto dado. En palabras sencillas, cuanta mayor certeza se busca en determinar la posición de una partícula, menos se conoce su cantidad de movimiento lineal. Este principio fue enunciado por Werner Heisenberg en 1927.

Principio de Incertidumbre de Heisenberg, principio que revela una característica distinta de la mecánica cuántica que no existe en la mecánica newtoniana. Como una definición simple, podemos señalar que se trata de un concepto que describe que el acto mismo de observar cambia lo que se está observando. Heisenberg se dio cuenta de que las reglas de la probabilidad que gobiernan las partículas subatómicas nacen de la paradoja de que dos propiedades relacionadas de una partícula no pueden ser medidas exactamente al mismo tiempo. Por ejemplo, un observador puede determinar o bien la posición exacta de una partícula en el espacio o su momento (el producto de la velocidad por la masa) exacto, pero nunca ambas cosas simultáneamente. Cualquier intento de medir ambos resultados conlleva a imprecisiones.

Heisenberg ejemplificaba su hallazgo del principio de incertidumbre que hemos sintetizado arriba, analizando la capacidad de resolución de un microscopio. Imaginemos que miramos una pequeña partícula al microscopio. La luz choca con la partícula y se dispersa en el sistema óptico del microscopio. La capacidad de resolución del microscopio (las distancias más pequeñas que puede distinguir) se halla limitada, para un sistema óptico concreto, por la longitud de onda de la luz que se utilice. Evidentemente, no podemos ver una partícula y determinar su posición a una distancia más pequeña que esta longitud de onda; la luz de longitud de onda mayor, simplemente se curva alrededor de la partícula y no se dispersa de un modo significativo. Por tanto, para establecer la posición de la partícula con mucha precisión hemos de utilizar una luz que tenga una longitud de onda extremadamente corta, más corta al menos que el tamaño de la partícula.

Pero, como advirtió Heisenberg, la luz también puede concebirse como una corriente de partículas (cuantos de luz denominados fotones) y el momento de un fotón es inversamente proporcional a su longitud de onda. Así, cuanto más pequeña sea la longitud de onda de la luz, mayor será el momento de sus fotones. Si un fotón de pequeña longitud de onda y momento elevado golpea la partícula emplazada en el microscopio, transmite parte de su momento a dicha partícula; esto la hace moverse, creando una incertidumbre en nuestro conocimiento de su momento. Cuanto más pequeña sea la longitud de onda de la luz, mejor conoceremos la posición de la partícula, pero menos certidumbre tendremos de su momento lineal.

Definición formal

Si se preparan varias copias idénticas de un sistema en un estado determinado, las medidas de posición y momento (masa x velocidad) de las partículas constituyentes variarán de acuerdo a una cierta distribución de probabilidad característica del estado cuántico del sistema. Las medidas de la desviación estándar Δx de la posición y el momento Δp verifican entonces el principio de incertidumbre que se expresa matemáticamente como:

donde es la constante reducida de Planck, denominada h partida (para simplificar, suele escribirse como [1] )

En la física de sistemas clásicos esta incertidumbre de la posición-momento no se manifiesta puesto que se aplica a estados cuánticos y h es extremadamente pequeño. Una de las formas alternativas del principio de incertidumbre más conocida es la incertidumbre tiempo-energía que puede escribirse como:

Esta forma es la que se utiliza en mecánica cuántica para explorar las consecuencias de la formación de partículas virtuales, utilizadas para estudiar los estados intermedios de una interacción. Esta forma del principio de incertidumbre es también la utilizada para estudiar el concepto de energía del vacío.

Explicación Cualitativa

En física clásica, consideramos que tenemos un sistema completamente caracterizado si conocemos las posiciones y el momento de todas sus partículas en un instante dado. Al analizar un sistema que constara de un sólo electrón Heisenberg encontró que para tratar de determinar la posición con exactitud se necesitarían fotones de alta frecuencia, que al interaccionar con el electrón alterarían significativamente su velocidad. Para tratar de determinar su velocidad con exactitud habría que utilizar fotones de baja energía, que alterasen mínimamente la velocidad de la partícula, pero estos fotones nos darían una visión demasiado "borrosa" de la posición. En suma, encontró que no existía un compromiso posible que nos permitiera medir con precisión ambas variables.

En general, cuando un sistema es lo suficientemente pequeño, no existen métodos

...

Descargar como (para miembros actualizados) txt (12 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com